b-tagging Performance in ATLAS

Grant Gorfine (University of Wuppertal)

On behalf of the ATLAS Collaboration

All material to be available in: Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-20

International Conference on Particle Physics

Istanbul, October 27-31, 2008

In Memoriam Engin Arik and Her Colleagues

Physics Motivation

- b-tagging vital for high p_T physics program at LHC.
- Top physics.
 - Large cross section, so moderate ϵ_{b} (>50%) OK.
 - Helps to reduce combinatoric and W+jets background
 - Important for highest precision measurements.
 - S/B 2x (4x) better requiring one (two) jets to be b-tagged
 - ttbar Dominant background to many channels
- Higgs
 - H→bb largest decay mode for $m_H < 135$ GeV
 - ttH, ($H \rightarrow$ bb). Distinct signature, 4 b jets!
 - Comparatively low cross sections. Require high $\varepsilon_{\rm b}$ ~70%.
- New Physics
 - Higgs in SUSY (eg H^+ →tb, bbH/A)
 - SUSY decay chains, Heavy Gauge bosons (eg $Z' \rightarrow$ bb ~TeV jets)

b-tagging overview

- b-jet properties
 - B hadron cτ~430 µm, ie travels order few mm with typical boost (eg ~3 mm @ p_T=50GeV, d₀~500 µm)
 - Spatial taggers Soft lepton - Impact parameter and secondary vertex. Semi-leptonic decay Jet axis $(b \rightarrow lvX, b \rightarrow c \rightarrow lvX,$ branching ratio $\sim 20\%$ e,µ each) Signed $d_0 > 0$ Secondary Vertex Soft lepton taggers Signed d₀<0 - Use p_T , rel **Primary vertex**

3

Impact parameter tagging

Secondary Vertex Tagger

- Inclusive secondary vertex reconstruction
 - Removal of V⁰s, conversions, material interactions
- Use 3 variables from vertex:

- Likelihood ratio method (+ fold in efficiency for vertex)
- Combined with IP3D: "IP3D+SV1": Rej 154 @ ε_b = 60%

Energy fraction

5

Topological Secondary Vertex ("JetFitter")

- Reconstruct topology of decay chain $B \rightarrow D$.
- Makes use of property that D and B vertex approximately along B hadron flight direction
 - Single track vertices possible.
- Vertex variables used in Likelihood:
 - Vertex mass
 - Energy fraction
 - Flight length significance
- Split into different topology categories, eg:
 - 1 vertex
 - 1 vertex + single track
 - 2 vertices
 - ...
- ~20% improvement in light jet rejection
- Promising for c/b separation

Grant Gorfine

b-tagging performance

- Track counting: Rej~30 @ 60%
- Soft muon: Rej~300 @ 10% (i.e. 80% w/ BR)
- Soft electron: Rej~100 @ 8%
- HLT: Rej~20 @ 60%
- Charm rejection: 5 7 @ 60%, 20 with JetFitter

Grant Gorfine

E. Arik Memorial ICPP, Istanbul

Effects of Misalignment

Random10: Shifts/rotations in Pixel layers, disks, and modules: 10 μ m in $r\varphi$, 30 μ m in η

Random5: ~ half as big

Perfect: Perfectly aligned detector

- **Aligned:** Misalignments put in simulation typical of expected assembly:
 - ~30-100µm shifts of modules, layer, disks
 - ~mm shifts of sub-system
 - clocking effects, rotations, etc.

Then aligned with actual ATLAS alignment procedures.

→ Includes any systematic deformations introduced by alignment procedure itself

Cluster errors tuned.

- Moderate (~15%) degradation in b-tagging performance wrt to Perfect alignment
- Encouraging but not all systematic deformations (eg pixel stave bow, twists, ...)

Grant Gorfine

E. Arik Memorial ICPP, Istanbul

b-tagging calibration with di-jet events

- Main idea: use QCD di-jets events
 - b-jet enriched by Muon+Jet signature (dedicated Trigger)

 Templates for b,c (from MC) and light jets (from data), Likelihood fit to data, extract b/light fraction.
Before/after tag → ε_b

- Less MC dependence
- Two samples with different b fraction
- Two uncorrelated taggers (soft muon & spatial tagger)
- 8 equations, 8 unknowns (including ϵ_b) Solve analytically
- Both methods work well for jet p_T < 80 GeV
- Precision on b-tag efficiency: 6% @ 50pb⁻¹. Dominated by systematics.

b-tagging calibration using ttbar events

Tag counting method

- Well defined flavour content in ttbar. Typically 2 b-jets ٠
 - Count number of 1,2,3 b-tags
 - If exactly 2 b-jets and 100% reconstruction efficiency

N(1 b-tag) = 2 N_{tot} $\varepsilon_{\rm b}(1-\varepsilon_{\rm b})$ N(2 b-tags) = $N_{tot} \varepsilon_b^2$

- But need to take into account reconstruction efficiency and other heavy flavour content, charm and light jet rejection.
 - Use MC to get fraction of expected b, charm and light jets
- Use likelihood to extract $\varepsilon_{\rm b}$, $\varepsilon_{\rm c}$ and cross-section
- Method requires low statistics ٠
 - For 100 pb⁻¹ at $\varepsilon_{\rm b} = 0.6$,
 - Semileptonic $\sigma_{stat} = 2.7\%$ syst 3.4%
 - Dilepton $\sigma_{stat} = 4.2\%$ syst 3.5%
- Efficiency averaged over p_T spectrum of jets

b-tagging calibration using ttbar events

- "b-jet sample" = jets in signal region background: obtain any distribution on statistical basis.
- eg. "IP3D+SV1" b-jet weight \rightarrow b-jet efficiency.
- For E_T >40GeV, error on ε_b : ±6%(stat) ± 3%(syst.) @ 200pb⁻¹
- $\epsilon_{\rm b}$ as function of p_T.
- Also other distributions. eg. pdfs ٠

Two other similar methods:

820

ATLAS

Combined

 $(E_{\tau} > 40 \text{ GeV})$

Conclusion

- Suite of b-tagging algorithms
 - Simpler taggers for commissioning
 - Track counting, JetProb: light jet rejection 30 @ ϵ_b 60%,
 - More sophisticated taggers for ultimate performance
 - Combined impact parameter and secondary vertex taggers
 - Light jet rejection 150 @ ϵ_b 60%
- Many studies to prepare for reality
 - Impact of misalignments ~15% degradation with real alignment procedures.
- Techniques developed to obtain b-tagging efficiency from data.
 - 6% accuracy achievable in first few 100 pb⁻¹
 - Can obtain any b-jet distribution
- Looking forward to LHC collisions and tagging b's!

