CMS Triggers for LHC Startup Chi Nhan Nguyen (Texas A&M University) International Conference on Particle Physics In Memoriam Engin Arik and Her Colleagues Istanbul, 27-31 October 2008 - Introduction - CMS Trigger System - Trigger Strategy for StartupCalibration, Alignment & early Physics - Conclusion ### LHC Trigger Challenge ### CMS Trigger System #### CMS has 2-Level trigger system: - Level-1 (L1) reduces rate from 40 MHz to 100 kHz (custom fast processing electronic boards) - Using only coarsely segmented Object ID and isolation - O No tracking! - High Level Trigger (HLT) reduces rate from 100 kHz to 100 Hz (~1000 Standard CPUs) - Finer granularity - \circ Track reconstruction (b, τ , electrons) - Kinematical cuts: Topology, invariant Mass - Novel approach compared to traditional 3(4)-Level Trigger Systems - Allows tuning of algorithms in most flexible way! ## Level-1 Trigger System # High Level Trigger #### High Level Trigger - Reduces rate from 100 kHz to 100 Hz - Runs on ~1000 Standard Dual Quad-Core CPUs at 2.6 GHz - Software/reconstruction can be in principle with offline quality: Allows tuning of algorithms in most flexible way! - Bandwidth/Timing constraint: - Each HLT trigger path is a sequence of filters - O Moving from low (Calo, Muon) to high (Pixel, Strip) time consuming algorithms - O All algorithms regional (except jets): Seeded by previous levels - Reco time is significantly improved by applying - \Box regional data-unpacking (using small (η, ϕ) region) - □ local reconstruction (using one subdetector only) - O Bandwidth: - 1 GB/s: Assuming event size of 1.5 MB → 700 Hz peak output rate - O Major exercise in 2007 with Xeon Core 2 3 GHz (10³²cm⁻²s⁻¹) at 50 kHz input rate → time budget ~40 ms/event Result: on average 43 ms/event ### LHC Startup Phase #### LHC Stage A plans before September 19: - 30 days of collisions at low intensity, unsqueezed beams for machine comissioning - Increase intensity, partially squeezed for further machine comissioning, CMS can do detector comissioning and look for early physics (rediscover SM): - 5 TeV Collsions, 75 ns bunch crossing time - Assume a few hours of beam time per day, 1-2 days per week - O Integrated luminosity: Assume 72h data taking per beam configuration: O(10 pb⁻¹) Lyn Evans (ICHEP 2008) | Bunches | N | Int. Lumi. | Luminosity | Events/ | |---------|-----------|---------------------|---------------------|----------| | | | (pb ⁻¹) | $(cm^{-2}s^{-1})$ | crossing | | 1 (3) | 10^{10} | - | $1.1 \cdot 10^{27}$ | << 1 | | 4 | 1010 | 1 | $4.5 \cdot 10^{27}$ | << 1 | | 43 | 1010 | - | $5.0 \cdot 10^{28}$ | << 1 | | 43 | 4 · 1010 | 0.21 | $8.0 \cdot 10^{29}$ | << 1 | | 43 | 4 · 1010 | 0.75 | $2.9 \cdot 10^{30}$ | 0.36 | | 156 | 4 · 1010 | 2.6 | $1.0 \cdot 10^{31}$ | 0.36 | | 156 | 9 · 1010 | (14) | $5.4 \cdot 10^{31}$ | 1.8 | # Strategy for LHC Startup #### Motivation: - Using Minbias & SM candles for calibration, alignment, energy scales (jets, missing E_T), trigger efficiencies, optimise lepton/photon ID, jet algo... - Rediscover Standard Model (SM) #### **Contraints on Physics Trigger Menus:** - 4/8 "DAQ slices" available: 50 kHz L1 bandwidth - Latest studies assume 3/8 ,,DAQ slices" available: 37 kHz L1 bandwidth - Safety factor 3 for unknown QCD cross section : - L1: 12 kHz - 9 HLT: 150 Hz (1GB/s; 100 MB/s reserved for alignment/calibration) ### General Strategy: Grids of E_T/p_T per object - Leptons: fine steps at low p_T, coarser steps at high p_T - Jets: coarse E_T steps - Relaxed triggers for unbiased studies → efficiency studies, calibration, alignment - In parallel: running standard physics triggers designed for higher luminosity ($\geq 10^{32}$ cm⁻²s⁻¹) - >> to be able to catch possible problems early - Adjust only prescales of triggers as a function of luminosity: Most flexible & fast (non-linearities in the trigger response vs. Luminosity makes projections diffcult) ### **Triggers for Minbias** #### Minbias (MB) triggers (L1): - Motivation: new accelerator, detector! Need to understand data taking, selection and detector performance using a zero/minimum bias data sample Limitation: Bandwidth (high prescales) - Zerobias: trigger on bunch crossing - MB based on forward Hcal (HF): $3 < \eta < 5$ - O Counting towers above threshold - Rates & efficiencies depend on noise - O Single-sided or double-sided coincidence (latter rejects gas/halo background) - O Alternative: Sum E_T of HF Rings - MB based on Ecal (less noisy) - Single Ecal tover > 2 GeV - O Double Ecal towers > 1 GeV # **Triggers for Jets** | Example grid of | L | | $8.0 \cdot 10^{29}$ | cm ⁻² s ⁻¹ | 2.9 · 10 | ³⁰ cm ⁻² s ⁻¹ | |---|---------------------------|----------------|---------------------|----------------------------------|----------|--| | jet triggers: • Coarse E _T grid • Some Monurum up | HLT
Threshold
(GeV) | L1 Trigger | Prescale | Individual
Rate (Hz) | Prescale | Individual
Rate (Hz) | | • Same Menu runs up to 10^{32} cm ⁻² s ⁻¹ by just | _ | L1_SingleJet15 | 1000 | 6 | 5000 | 4 | | changing prescales | 30 | L1_SingleJet15 | 25 | 21 | 250 | 6 | | Use lower threshold paths to measure | 50 | L1_SingleJet30 | 5 | 9 | 10 | 12 | | higher threshold | 80 | L1_SingleJet50 | 1 | 5 | 5 | 3 | | trigger efficiencies
(Minbias for lowest) | 110 | L1_SingleJet70 | 1 | 1 | 1 | 3 | | ម្តី HLT Thresho | 180 | L1_SingleJet70 | 1 | 0.1 | 1 | 0.2 | | — pT = 30
— pT = 50
— pT = 80 | 250 | L1_SingleJet70 | 1 | 0 | 1 | 0 | • Also included are complementary average E_T Dijet paths designed to measure η dependence of jet response (see also Hcal calibration later) # Triggers for Missing ET Similar as for jet triggers: $8.0 \cdot 10^{29} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ $2.9 \cdot 10^{30} \, \text{cm}^{-2} \text{s}^{-1}$ - Same Menu runs up to 10³² cm⁻²s⁻¹ by just changing prescales - Use lower threshold paths to measure higher threshold trigger efficiencies (Minbias for lowest) | HLT Threshold (GeV) | L1 Trigger | Prescale | Individual
Rate (Hz) | Prescale | Individual
Rate (Hz) | |---------------------|------------|----------|-------------------------|----------|-------------------------| | _ | L1_ETM20 | 50 | 8 | 250 | 6 | | 25 | L1_ETM20 | 50 | 0.6 | 250 | 0.5 | | 35 | L1_ETM30 | 1 | 3 | 10 | 1.1 | | 50 | L1_ETM40 | 1 | 0.8 | 1 | 0.4 | | 65 | L1_ETM50 | 1 | 0 | 1 | 0.1 | | 75 | L1_ETM50 | 1 | 0 | 1 | 0.1 | # **Triggers for Calibration: Ecal** #### Ecal calibration - ϕ -symmetry (1-10 pb-1) - \circ Intercalibration of crystals at constant η assuming homogeneity of energy - \Box L1: Zero-/Minium-Bias, very low threshold of L1 e/ γ seeds (single/double > 2/1 GeV) - \Box HLT: At least one RecHit with E_T > 0.15/0.65 GeV for EB/EE - \circ ϕ -Invariance not exact: inhomogenious tracker material (1-2% precision in barrel) - Z—ee triggers (1-10 pb-1): Region η -rings calibration assuming almost flat distribution and exploiting invariant mass peak (absolute energy scale) - \circ Single-/Double-Electron E_T > 10/15 GeV - O Tight selection for brem-free electrons: expected precision is 4% in endcap - Alternatively using unconverted photons from π^0 (10-100 pb-1): Absolute energy scale by exploiting invariant mass at different point than Z - \circ L1: $p_T(e/y) > 5 \text{ GeV}$ - \circ HLT: 90 MeV < M($\gamma\gamma$) < 160 MeV - O Precision expected: 1% in barrel # Triggers for Calibration: Hcal #### **Heal calibration** - ϕ -symmetry (1-10 pb-1): similar to Ecal expected precision 3-6% - Isol. track trigger: Compare track p_T to Hcal energy 90<GenJetPt<120 GeV - OL1: Jet triggers - \circ HLT: p_T(pixel track) > 20 GeV - O Precision: 2-3% - Jet energy scale using Di-jet events (10-100 pb-1) - O Di-jet balancing - □ Incl. jets (likely prescaled → DiJetAverage) - \Box Uniform response vs. η - \circ Cross check with: \mathbb{Z}/γ +jet - •Standard HCAL calibration scheme - ·After dijet balancing #### E/Hcal calibration - Calibrations need maximal rate (millions of events) to be fast and accurate - But will exceed bandwith & CPU timing if everything written & reconstructed - O Writing minimal output stream - O CPU: Regional unpacking & reconstruction around L1 seed ## **Triggers for Muons** #### **Check Muon algorithms:** - No L1 quality cuts, any hit at 1st muon station, no HLT → test L1 track finders, quality cuts - L1 threshold 3 GeV (kinematic limit), HLT passthrough → test HLT algorithms - Release cut on impact parameter → insensitive to pixel mis-alignment & beamspot offset - Thresholds from 3 GeV in 2 GeV steps: isolated & non-isolated (check isolation effect) Different double muon triggers to measure efficiency for different SM candles (Z, Y, J/Ψ) J/Ψ $$\circ p_T > 3 \text{ GeV}$$ $$\circ$$ 2.9 < M($\mu\mu$) < 3.3 GeV - Rate (1E32): 2 Hz - Y - $\circ p_T > 3 \text{ GeV}$ - $9 < M(\mu\mu) < 12 \text{ GeV}$ - O Rate (1E32): 2 Hz - Z - $\circ p_T > 7 \text{ GeV}$ - $9 \times M(\mu\mu) < 100 \text{ GeV}$ - Rate (1E32): 0.1 Hz ## Triggers for Alignment #### Tracker alignment: - 1-10 pb⁻¹: High-p_T isolated hadrons pile-up free events through minbias/dijet triggers - 10 pb-1: Muons from J/Ψ and Y events selected with single muon, J/ Ψ , Y triggers. Precision: ~100 μ m - 10-100 pb-1: High-p_T muons from $Z\rightarrow \mu\mu$, $W\rightarrow \mu\nu$ events with low threshold single/double muon triggers. Precision: 0.1-1 μ m O S156: 10 pb-1 #### Muon alignment: - Clean source of high-p_T muons: - \circ Select W $\rightarrow \mu \nu$ and Z $\rightarrow \mu \mu$ events with single isolated muon triggers - \circ 10 pb-1: 103 μ allow rough alignment: $\Delta R \sim 1$ mm, $\Delta \phi \sim 0.3$ mrad Muon alignment results (MB1) versus state of the tracker ## **Triggers for Electrons & Photons** #### **Check Electron algorithms:** - Lowest threshold trigger starts at 10 GeV in 5 GeV steps - To study effects due to mis-calibration and mis-alignment at startup - O Different isolations (track, Hcal): No/Loose/Tight - O Different pixel matching windows: Large/Startup/Normal | • | Can also use offline reconstructed | |---|------------------------------------| | | electrons to study and tune | | | isolation & matching windows | • Z→ee events to measure trigger effciency | Check | Photon | al | gorithms: | |-------|--------|----|-----------| | | | | | - Lowest threshold unprescaled trigger start from 10 GeV - To study effects due to mis-calibration and mis-alignment at startup - O Different isolations (track, Ecal, Hcal): No/Loose/Tight - Study jet energy scale with γ +jets events | HLT Threshold (GeV) | L1 Trigger | Isolation
Criteria | Prescale | | |---------------------|----------------|-----------------------|----------|--| | _ | L1_SingleEG5 | None | Yes | | | 10 | I 1 SimpleFCF | None | Yes | | | 10 | L1_SingleEG5 | Loose | 765 | | | 15 | I.1 GinalaEC10 | None | Yes | | | 15 | L1_SingleEG10 | Loose | | | | | | None | Yes(?) | | | 20 | L1_SingleEG12 | Loose | No | | | | | 1032 | No | | | | | None | | | | 25 | L1_SingleEG15 | Loose | No | | | | | 1032 | | | ### Conclusion - LHC is a challenge for the CMS trigger system - CMS has implemented a non-standard 2 Level trigger system for data reduction from 40MHz to 100 Hz - Level-1: Custom fast processing electronics - HLT: Standard CPU filter farm offline software high flexibility - Trigger menus for first data are in place and studied at realistic conditions (<10³² cm⁻²s⁻¹) - Flexible & robust enough to cope with the unexpected - O At startup focus on comissioning of detector performance, data readout & selection - □ applying dedicated triggers: minbias, calibration, alignment - Selection of Standard Model candles for comissioning & early physics - □ Unprescaled low threshold triggers which likely be prescaled for higher luminosity - Same menu will be basis for higher statistics SM measurements at $L \ge 10^{32} \, \text{cm}^{-2} \text{s}^{-1}$ - Older studies on efficiencies and rates exist - But need to be confirmed by experience with very first data We are looking forward (and are prepared) to restarting in Spring 2009! ### **Expected Rates** ### Calorimeter Trigger Geometry ### Level-1 EM Trigger ### Level-1 Jet/Tau Trigger - •12x12 trigger tower E₊ sums in 4x4 region steps with central region > others - Larger trigger towers in HF but ~ same jet region size, 1.5 η x 1.0 ϕ τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5 - Redefine jet as τ jet if none of the nine 4x4 region τ -veto bits are on Output - Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity ### Level-1 Muon Trigger Geometry - RPC: resistive plate chamber system - CSC: cathode strip chamber system - DT: drift-tube system Initial coverage of RPC is staged to η < 1.6 Initial coverage of CSC 1st station is staged to η < 2.1 ### Level-1 Muon Trigger Overview # Level-1 Muon Track Finding #### **Both are multi-layer detectors** Bunch & Track Identifier (BTI) uses shift registers to search for patterns in drift tubes (ϕ and θ) and to assign correct BX Local Charged Track (LCT) logic identifies track stubs in CSCs (in ϕ and η) and assigns BX ## **HLT Algorithms** <u>Jets</u>: Iterative cone algorithm (same as offline) Missing E_T : Vector sum of Tower E_T #### Muons - L2: Local Kalman Filter from muon system only, seeded by L1, p_T cut, E/Hcal isolation - L3: Global refit including tracker, p_T cut, track isolation #### **Electrons/Photons:** - L2: Cluster reconstruction in 4x4 towers, matching with L1 seed, H/E cut, E_T cut, Hcal isolation, Brem recovery - L2.5: Pixel reco (at least 2 hits) & L1 matching (electron only) - L3: Loose track reconstruction, E/p cut (electron only), track isolation #### Taus: - L2: Jet matching, Ecal isolation - L2.5: Pixel matching, pixel track reconstruction, leading track p_T cut, pixel isolation - L3: Tracker reconstruction, p_T cut # **HLT Processing Timing** - Average time needed to run full Trigger Menu on L1-accepted events: 43 ms/event - Core 2 5160 Xeon processor running at 3.0 GHz - CPU times strongly dependent on HLT input - "Tails" have a significant impact on the average time - Will eliminate with time-out mechanism ## HLT Processing Timing cont. - Calculate ave. processing times for different QCD, W/Z, μ-enriched samples - Weight by combined cross-section and L1 selection efficiency, add them up - Compared weighted sum with result obtained on L1-accepted min. bias events | Sample | L1 efficiency (%) | L1 eff. $ imes \sigma$ (pb) | Average time (ms) | |--|-------------------|---------------------------------|-------------------| | Minimum bias | 0.19 ± 0.01 | $(1.50 \pm 0.09) \times 10^8$ | 42.7 | | QCD $p_{\mathrm{T}}^{c} \in [0, 15] \mathrm{GeV/c}$ | 0.08 ± 0.01 | $(4.36 \pm 0.49) \times 10^{7}$ | 31 | | QCD $\hat{p}_{T} \in [15, 20]$ GeV/c | 2.08 ± 0.11 | $(3.04 \pm 0.17) \times 10^7$ | 36 | | QCD $p_{T}^{c} \in [20, 30] \text{ GeV/c}$ | 5.75 ± 0.18 | $(3.64 \pm 0.11) \times 10^7$ | 40 | | QCD $\hat{p_T} \in [30, 50]$ GeV/c | 21.70 ± 0.41 | $(3.54 \pm 0.07) \times 10^7$ | 47 | | QCD $\hat{p_{T}} \in [50, 80]$ GeV/c | 63.36 ± 0.84 | $(1.37 \pm 0.02) \times 10^7$ | 53 | | QCD $p_T \in [80, 120] \text{ GeV/c}$ | 95.96 ± 1.23 | $(2.96 \pm 0.04) \times 10^6$ | 73 | | QCD $p_T^c \in [120, 170] \text{ GeV/c}$ | 99.87 ± 1.18 | $(4.93 \pm 0.06) \times 10^{5}$ | 143 | | QCD $p_{T}^{c} \in [170, 230] \text{ GeV/c}$ | 100.00 ± 0.00 | $(1.01 \pm 0.00) \times 10^{5}$ | 264 | | QCD $p_{\mathrm{T}} \in [230, 300]\mathrm{GeV/c}$ | 100.00 ± 0.00 | $(2.45 \pm 0.00) \times 10^4$ | 385 | | $pp \rightarrow \mu X$ | 42.96 ± 0.37 | $(1.03 \pm 0.01) \times 10^{7}$ | 74 | | W ightarrow e u | 93.18 ± 0.59 | $(7.36 \pm 0.05) \times 10^3$ | 280 | | $W \rightarrow \mu \nu$ | 84.67 ± 0.80 | $(8.29 \pm 0.08) \times 10^{2}$ | 123 | | Z ightarrow ee | 99.54 ± 0.67 | $(8.16 \pm 0.05) \times 10^{2}$ | 739 | | $Z \rightarrow \mu \mu$ | 98.99 ± 1.20 | $(7.82 \pm 0.09) \times 10^{2}$ | 184 | | Weighted sum of QCD | 42.9 ± 5.6 | | | Table 8.4 Average processing wall-clock times for running the High-Level Trigger Menu at $\mathcal{L}=10^{32}~\text{cm}^{-2}~\text{s}^{-1}$ on Level-1-accepted events at an idle Core 25160 Xeon 3.0 GHz machine.