Hadron Spin Physics

Spin Muon Collaboration (SMC)

Spin Crisis !!!

not as bad as the subprime market crisis...
many Spin Doctors... surviving ...
Spin Physics: ...a "niche market"...?
Aldo Penzo, INFN -Trieste International Conference on Particle Physics 29 October 2008, Bogazici University, Istanbul
...to enjoy a mystic spin experience...???

... and thrive ...

"Spin Crisis" ...since 20 years...

- Success of "naive quark model " predicting ratios of magnetic moments of octet baryons,
- assumption that spin of proton should be carried by its 3 valence quarks.
- It was therefore a surprise when it was discovered that the proton spin is not fully carried by quarks.
- A large fraction of proton spin should be carried by gluons, or strange quarks, or orbital angular momenta.

$$
\frac{1}{2}=\frac{1}{2} \Delta q+\Delta G+L_{z}
$$

In the 70 's... golden age of spin ...

- 1969 - Butanol Polarized Targets (high $P_{T} \approx 0.7$; large H content) CERN team will build SMC giant target
- 1973 - First high energy polarized proton beam at the ZGS; achieve 2×10^{10} intensity with $70 \% \mathrm{P}_{\mathrm{B}}$ at $11.75 \mathrm{GeV} / \mathrm{c}$; pioneering AGS and RHIC
- 1975 - GaAs Polarized Electron Sources: at SLAC currents up to 15 mA in $1.6-\mu \mathrm{sec}$ pulses were accelerated at 180 pps. P_{B} at high energy was $\sim 37 \%$.

- For SLC sources were improved and P_{B} was regularly $\sim 80 \%$

Through the 70 's...and 80 's...

- 1976 -1979: Westfield College London
- Measurement of $\pi+p$ backward elastic differential cross-section using the RMS (Rutherford Multiparticle Spectrometer).
- Measurement of $\pi+\mathbf{p} \rightarrow \mathbf{K + \Sigma +}$ differential cross-section and polarization between 1.27 GeV/c and $2.50 \mathrm{GeV} / \mathrm{c}$.
- (In Proceedings Baryon 1980, Toronto)

The RMS at Nimrod

- The Rutherford Multiparticle Spectrometer at Nimrod was equipped with chambers to measure tracks in magnetic field and a large Cherenkov counter for particle discrimination

A Polarized target experiment at CERN

- A system of wire chambers (some also in the magnet gap for momentum reconstruction, trigger given by scintillators and Cherenkov counters.

πp elastic backward scattering

Results

- In backward πp the large polarization is contribution of at least 2 exchanges, having nucleon N, Δ quantum numbers, and as well in reactions
$\pi-\mathrm{p} \rightarrow \mathrm{K}^{\circ} \Lambda^{\circ}$
$\pi-\mathrm{p} \rightarrow \mathrm{K}^{\circ} \Sigma^{+}$
- but with strangeness exchange (Λ, Σ)

Baryon Exchanges

- The backward scattering cross section is very small and decreases rapidly with increasing energy and has a peak at 180°.
- Backward elastic scattering of pions by nucleons goes through baryon exchange.
- At low energies, families of resonances produced in the s-channel, have angular momentum J approximately linear in M^{2} and belong to Regge trajectories.
- At larger energies Regge trajectories exchanged in the t-channel (u-channel) produce the forces that create s-channel particles. The general idea that s-channel resonances should be equivalent to, and not added to, the t-channel exchanges is referred to as Duality

Baryon Regge trajectories

1. Same slope of Regge trajectories for mesons and $\Delta^{\prime} \mathrm{s}$;
2. Δ resonances with $S=1 / 2$ and $S=3 / 2$ are on the same Regge trajectory.
3. N and Δ resonances with spin $S=3 / 2$ lie on a same Regge trajectory; $S=1 / 2$ N's are shifted.

Degeneracy of (baryon) Trajectories (EXD) is characteristic property of dual models, with dynamic consequences

From duality to strings

- Veneziano established a mathematical frame for dual models (Euler Beta function)
- Nambu gave a physical representation of nuclear forces as vibrating strings (with quarks at the ends) in rotation
- The strings have a linear energy density of $\kappa[\mathrm{GeV} / \mathrm{fm}]$; the energy is E $\approx \pi \kappa R$ and the angular momentum is $J \approx(1 / 2) \pi \kappa R^{2}$; thus the Regge slope is $\alpha \approx \mathrm{J} / \mathrm{M}^{2} \approx(2 \pi \kappa)^{-1} \sim 0.9 \mathrm{GeV}^{-2}$

Production of Quarks with

 Polarization and its Measurement
quark recombination

QCD
hadrons

FNAL E704

$\sqrt{ }=20 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}=0.5-2.0 \mathrm{GeV} / \mathrm{c}$

STAR collaboration

Phys. Rev. Lett. 92 (2004) 171801

- Similar pattern...maybe different mechanisms

Spin Asymmetry for $\mathrm{pp} \rightarrow \pi^{ \pm} \mathrm{X}$

Hyperon Production and Polarization

Spin Observables

Λ° Hyperon production and decay

- With its "self-analyzing" decay $\Lambda->p \pi^{+}(\operatorname{Br} \sim 64 \%)$, the Λ^{0} polarization can be measured from the angular distribution of decay proton:

- $\quad \Lambda$ polarization plays an important role in spin physics:

1. Well-known transverse polarization in unpolarized pp, pA (G. Bunce et al 1976).
2. Study pol. fragmentation function and spin content of hyperon.
3. A tool to study spin structure of nucleon.

- Transverse Λ polarization with pol. beam:
\checkmark fixed Target pp: E704 (PRL'97), DISTO(PRL'99)...
\checkmark lepton-nucleon: COMPASS
\checkmark pp collider: RHIC

FNAL E704

Spin Observables for $\mathrm{pp} \rightarrow \Lambda^{0} \mathrm{X}$

Longitudinal
 Λ^{0} polarization

\checkmark e+e-: ALEPH(PLB'96), OPAL(EPJC'98)
\checkmark Polarized lepton-nucleon DIS: E665(EPJC'00), HERMES(PRD'01), NOMAD(NPB'01), COMPASS
\checkmark Polarized pp collider: RHIC

		SU(6)	DIS
ΔU	$(\Sigma-D) / 3$	0	-0.17
ΔD	$(\Sigma-D) / 3$	0	-0.17
ΔS	$(\Sigma+2 D) / 3$	1	0.62

Spin crisis revisited

- Inclusive DIS
- data sets used in: the GRSV analysis
- the combined DIS/SIDIS fit of DNSnew

continued

semi-inclusive DIS data
not in DNS analysis

DIS, SI-DIS

Photon Gluon
Leading Order QCD Compton

- Processes that contribute to the DIS, SIDIS

State of the art in lepto-production

De Florian
Stratmann
Sasset

DSSV global analysis 08

Vogelsong

experiment	data type	data points fitted	x^{2}
EMC, SMC	DIS	34	25.7
COMPASS	DIS	15	8.1
E142, E143, E154, E155	DIS	123	109.9
HERMES	DIS	39	33.6
HALL-A	DIS	3	0.2
CLAS	DIS	20	8.5
SMC	SIDIS, $h^{ \pm}$	48	50.7
HERMES	SIDIS, $h^{ \pm}$	54	38.8
	SIDIS, $\pi^{ \pm}$	36	43.4
	SIDIS, $K^{ \pm}$	27	15.4
COMPASS	SIDIS, $h^{ \pm}$	24	18.2
PHENIX (in part prel.)	$200 \mathrm{GeV} \mathrm{pp}, \pi^{0}$	20	21.3
PHENIX (prel.)	$62 \mathrm{GeV} \mathrm{pp}, \pi^{0}$	5	3.1
STAR (in part prel.)	$20 \mathrm{GeV} \mathrm{pp} jet$,	19	15.7
TOTAL:		467	392.6

RHIC Polarized Collider

Hadron probes

Reaction	Dom. partonic process	probes	LO Feynman diagram	$\frac{\Delta G}{G} \times \frac{\Delta G}{G}$
$\begin{aligned} & \vec{p} \vec{p} \rightarrow \pi+X \\ & {[61,62]} \end{aligned}$	$\begin{gathered} \vec{g} \vec{g} \rightarrow g g \\ \vec{q} \vec{g} \rightarrow q g \end{gathered}$	Δg		
$\begin{aligned} & \vec{p} \vec{p} \rightarrow \mathrm{jet}(\mathrm{~s})+X \\ & {[71,72]} \end{aligned}$	$\begin{aligned} & \vec{g} \vec{g} \rightarrow g g \\ & \vec{q} g \rightarrow q g \end{aligned}$	Δg	(as above)	
$\begin{aligned} & \vec{p} \vec{p} \rightarrow \gamma+X \\ & \vec{p} \vec{p} \rightarrow \gamma+\text { jet }+X \\ & \vec{p} p \rightarrow \gamma \gamma+X \\ & {[67,73,74,75,76]} \end{aligned}$	$\begin{aligned} & \overrightarrow{q g} \rightarrow \gamma q \\ & \vec{q} \vec{g} \rightarrow \gamma q \\ & \vec{q} \vec{q} \rightarrow \gamma \gamma \end{aligned}$	$\begin{gathered} \Delta g \\ \Delta g \\ \Delta q, \Delta \bar{q} \end{gathered}$		$\frac{\Delta G}{G} \times \frac{\Delta q}{q}$
$\begin{aligned} & \vec{p} \vec{p} \rightarrow D X, B X \\ & {[77]} \end{aligned}$	$\vec{g} \vec{g} \rightarrow c \bar{c}, b \bar{b}$	Δg	grok	$\frac{\Delta q}{q} \times \frac{\Delta \bar{q}}{\bar{q}}$

- Reactions pp -> pX, jet $X, g X, ~ c \bar{c} X$, probe gluon
- Measure product of 2 observables

Parton scattering : $a b \rightarrow c d$

RHIC: PHENIX All (pp $\left.\rightarrow \pi^{0} X\right)$

RHIC: STAR All (pp \rightarrow jet X)

(\square this point represents earlier data from E704 on " multiphoton" events)

Results DSSV global analysis

- pattern of flavor - asymmetric light quark-sea (even within uncertainties)
- small $\Delta \mathrm{g}$, perhaps changing sign
- Δ s positive at large x
- $\Delta \mathrm{u}+\Delta \overline{\mathrm{u}}$ and $\Delta \mathrm{d}+\Delta \mathrm{d}$ very similar
 to GRSV/DNS results

χ^{2} comparison of different methods

FNAL-E704: early hint of $\Delta G / G \rightarrow 0$

- Adams et al (1991) PL 261B, 197 ($p \mathrm{p} \rightarrow \pi^{\circ} \mathrm{X}$)
- Adams et al (1994) PL 336B, 269 (pp \rightarrow multi- $\boldsymbol{\gamma}$ X)

