

Spin Muon Collaboration (SMC) Spin Crisis !!!

not as bad as the subprime market crisis... many Spin Doctors... surviving ...

Spin Physics: ...a "niche market"...?

Aldo Penzo, INFN -Trieste International Conference on Particle Physics 29 October 2008, Bogazici University, Istanbul

...to enjoy a mystic spin experience...???

... and thrive ...

"Spin Crisis" ... since 20 years...

- Success of "naive quark model" predicting ratios of magnetic moments of octet baryons,
- assumption that spin of proton should be carried by its 3 valence quarks.
- It was therefore a surprise when it was discovered that the proton spin is not fully carried by quarks.
- A large fraction of proton spin should be carried by gluons, or strange quarks, or orbital angular momenta.

 $\frac{\mathbf{I}}{2} = \frac{1}{2}\Delta \mathbf{q} + \Delta \mathbf{G} + \mathbf{L}_{\mathbf{Z}}$

In the 70's... golden age of spin ...

- 1969 Butanol Polarized Targets (high P_T≈ 0.7; large H content) CERN team will build SMC giant target
- 1973 First high energy polarized proton beam at the ZGS; achieve 2x10¹⁰ intensity with 70% P_B at 11.75 GeV/c; pioneering AGS and RHIC
- 1975 GaAs Polarized Electron Sources: at SLAC currents up to 15 mA in 1.6-µsec pulses were accelerated at 180 pps. P_B at high energy was ~37%.
- For SLC sources were improved and P_B was regularly ~80%

Through the 70's...and 80's...

- 1976 -1979: Westfield College London
- Measurement of π+ p backward elastic differential cross-section using the RMS (Rutherford Multiparticle Spectrometer).
- Measurement of π+ p → K+ Σ+ differential cross-section and polarization between 1.27 GeV/c and 2.50 GeV/c.
- (In Proceedings Baryon 1980, Toronto)

The RMS at Nimrod

 The Rutherford Multiparticle Spectrometer at Nimrod was equipped with chambers to measure tracks in magnetic field and a large Cherenkov counter for particle discrimination

A Polarized target experiment at CERN

 A system of wire chambers (some also in the magnet gap for momentum reconstruction, trigger given by scintillators and Cherenkov counters.

πp elastic backward scattering

Results

- In backward πp the large polarization is contribution of at least 2 exchanges, having nucleon N, Δ quantum numbers, and as well in reactions
 - π p \rightarrow K^o Λ ^o π - p \rightarrow K^o Σ ⁺
- but with strangeness exchange (Λ, Σ)

Baryon Exchanges

- The backward scattering cross section is very small and decreases rapidly with increasing energy and has a peak at 180°.
- Backward elastic scattering of pions by nucleons goes through **baryon exchange**.
- At low energies, families of resonances produced in the s-channel, have angular momentum J approximately linear in M² and belong to Regge trajectories.
- At larger energies Regge trajectories exchanged in the t-channel (u-channel) produce the forces that create s-channel particles. The general idea that s-channel resonances should be equivalent to, and not added to, the *t*-channel exchanges is referred to as **Duality**

Baryon Regge trajectories

- 1. Same slope of Regge trajectories for mesons and Δ ' s;
- 2. Δ resonances with S=1/2 and S=3/2 are on the same Regge trajectory.
- N and ∆ resonances with spin S=3/2 lie on a same Regge trajectory; S= 1/2 N's are shifted.

Degeneracy of (baryon) Trajectories (EXD) is characteristic property of dual models, with dynamic consequences

From duality to strings

- Veneziano established a mathematical frame for dual models (Euler Beta function)
- Nambu gave a physical representation of nuclear forces as vibrating strings (with quarks at the ends) in rotation
- The strings have a linear energy density of κ [GeV/fm]; the energy is E $\approx \pi \kappa R$ and the angular momentum is $J \approx (1/2) \pi \kappa R^2$; thus the Regge slope is $\alpha \approx J/M^2 \approx (2\pi\kappa)^{-1} \sim 0.9 \text{ GeV}^{-2}$

Hyperon Production and Polarization

Spin Observables Ρ A

Λ^{o} Hyperon production and decay

• With its "self-analyzing" decay Λ ->p π ⁺ (Br~64%), the Λ ^o polarization

can be measured from the angular distribution of decay proton:

- Λ polarization plays an important role in spin physics:
- 1. Well-known transverse polarization in unpolarized pp, pA (G. Bunce et al 1976).
- 2. Study pol. fragmentation function and spin content of hyperon.
- 3. A tool to study spin structure of nucleon .

- Transverse Λ polarization with pol. beam:
- ✓ fixed Target pp: E704 (PRL'97),DISTO(PRL'99)...
- ✓ lepton-nucleon : COMPASS
- ✓ pp collider : RHIC

FNAL E704

Longitudinal Λ^{o} polarization

- ✓ e+e-: ALEPH(PLB'96), OPAL(EPJC'98)
- ✓ Polarized lepton-nucleon DIS: E665(EPJC'00), HERMES(PRD'01), NOMAD(NPB'01), COMPASS
- ✓ Polarized pp collider: RHIC

		SU(6)	DIS
ΔU	(<i>Σ</i> -D)/3	0	-0.17
ΔD	(Σ-D)/3	0	-0.17
∆S	(<i>S</i> +2 <i>D</i>)/3	1	0.62

- data sets used in: the GRSV analysis
- the combined DIS/SIDIS fit of DNSnew

continued

DIS, SI-DIS

Processes that contribute to the DIS, SIDIS

State of the art in lepto-production

De Florian

Stratmann

Sasset

Vogelsong

DSSV global analysis 08

- overall quality of the global fit:
- fit_X2/d.o.f. = 0.88

experiment	data	data data points	
	type	fitted	
EMC, SMC	DIS	34	25.7
COMPASS	DIS	15	8.1
E142, E143, E154, E155	DIS	123	109.9
HERMES	DIS	39	33.6
HALL-A	DIS	3	0.2
CLAS	DIS	20	8.5
SMC	SIDIS, h^{\pm}	48	50.7
HERMES	SIDIS, h^{\pm}	54	38.8
	SIDIS, π^{\pm}	36	43.4
	SIDIS, K^{\pm}	27	15.4
COMPASS	SIDIS, h^{\pm}	24	18.2
PHENIX (in part prel.)	200 GeV pp, π^0	20	21.3
PHENIX (prel.)	$62 \mathrm{GeV}\mathrm{pp},\pi^0$	5	3.1
STAR (in part prel.)	$200{\rm GeV}$ pp, jet	19	15.7
TOTAL:		467	392.6

RHIC Polarized Collider

Hadron probes

Reaction	Dom. partonic process	probes	LO Feynman diagram	
$\vec{p}\vec{p} \to \pi + X$	$ec{g}ec{g} ightarrow gg$	Δg	go o o o de	$\Delta G_{\times} \Delta G$
[61, 62]	$\vec{q}\vec{g} ightarrow qg$		≥ <u> </u> <u> </u> <u> </u> <u> </u> 	\overline{G} \overline{G}
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$ [71, 72]	$ec{g}ec{g} ightarrow gg$ $ec{q}ec{g} ightarrow qg$	Δg	(as above)	
$ \begin{array}{c} \vec{p}\vec{p} \rightarrow \gamma + X \\ \vec{p}\vec{p} \rightarrow \gamma + \mathrm{jet} + X \end{array} $	$\begin{array}{c} \vec{q}\vec{g} \rightarrow \gamma q \\ \vec{q}\vec{g} \rightarrow \gamma q \end{array}$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	<u>م</u> ر	$\frac{\Delta G}{G} \times \frac{\Delta q}{q}$
$\vec{p}\vec{p} \to \gamma\gamma + X$ [67, 73, 74, 75, 76]	$\vec{q}\vec{q} o \gamma\gamma$	$\Delta q, \Delta \bar{q}$		G q
$\vec{p}\vec{p} \to DX, BX$ [77]	$ec{g}ec{g} ightarrow car{c}$, $bar{b}$	Δg	Jase of	$\frac{\Delta q}{q} \times \frac{\Delta \overline{q}}{\overline{q}}$

- Reactions pp -> pX, jet X, gX, cc X, probe gluon
- Measure product of 2 observables

RHIC: PHENIX ALL ($pp \rightarrow \pi^{o}X$)

RHIC: STAR ALL ($pp \rightarrow jet X$)

(this point represents earlier data from E704 on *"multiphoton"* events)

Results DSSV global analysis

- pattern of flavor asymmetric light quark-sea (even within uncertainties)
- small Δg , perhaps changing sign
- Δs positive at large x
- Δu + Δū and Δd + Δd very similar to GRSV/DNS results

 Δ s: receives a large negative contribution at small x Δ g: huge uncertainty below 0.01; 1stmoment not well determined

χ^2 comparison of different methods

FNAL-E704: early hint of $\Delta G/G \rightarrow 0$

- Adams et al (1991) PL 261B, 197 (pp $\rightarrow \pi^{o}X$)
- Adams et al (1994) PL 336B, 269 (pp \rightarrow multi- γ X)