Borexino results after 200 days of data

Marco G. Giammarchi Istituto Nazionale Fisica Nucleare - Milano (on behalf of the Borexino collaboration)

International Conference on Particle Physics – Istanbul – October 2008

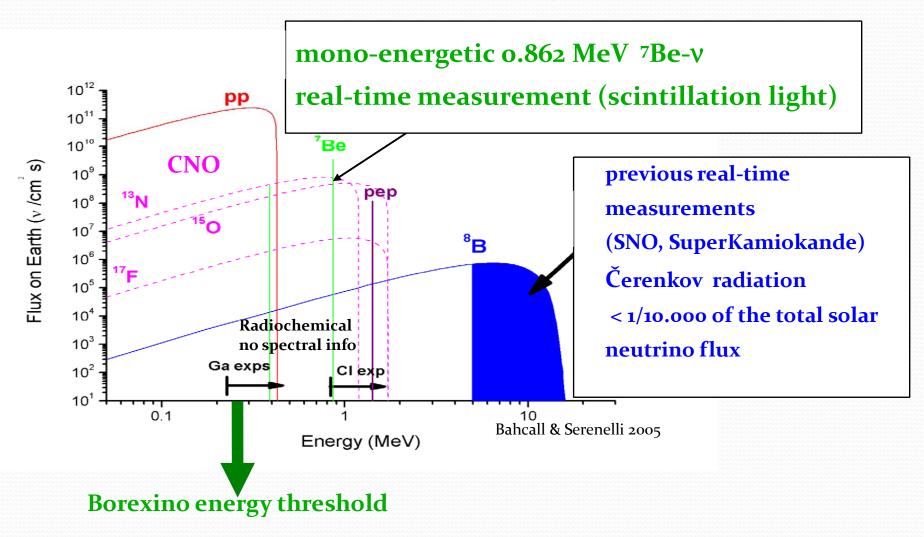
Borexino Collaboration

Princeton University

Kurchatov Institute (Russia)

Jagiellonian U. Cracow (Poland)

Heidelberg (Germany)


Virginia Tech. University

Dubna JINR (Russia)

Solar neutrino energy spectrum

ICPP - Istanbul - October 2008

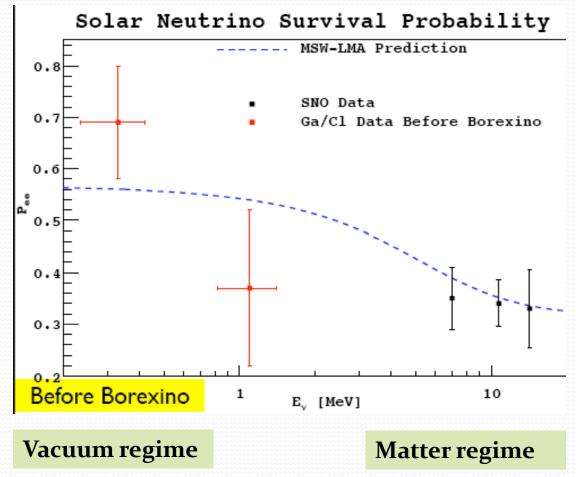
Standard Solar Model: Neutrino fluxes vs solar metallicity

(metallicity – abundance of the elements above Helium)

Φ (cm ⁻² s ⁻¹)	рр (х 10 ¹⁰)	pep (x 10 ⁸)	⁷ Be (x 10 ⁹)	⁸ B (x 10 ⁶)	¹³ N:CNO (x 10 ⁸)	¹⁵ O:CNO (x 10 ⁸)	¹⁷ F:CNO (x 10 ⁶)
BSo5 (1) GS 98 (2)	5.99	1.42	4.84	5.69	3.07	2.33	5.84
BSo5 (1) AGSo5(3)	6.06	1.45	4.34	4.51	2.01	1.45	3.25
Δ	+1%	+2%	-10 %	-21%	-35%	-38%	-44%

⁽¹⁾BS05: Bahcall, Serenelli & Basu, AstropJ 621 (2005) L85

Asplund ,Grevesse & Sauval 2005, Nucl. Phys. A 777, 1 (2006).


BUT: incompatible with helioseismological measurements

MEASURING for the first time the CNO-neutrino fluxes would help to resolve the controversy!

⁽²⁾ Based on <u>high metalicity model</u> GS98: Grevesse & Sauval, Space Sci. Rev. **85, 161 (1998)**

⁽³⁾Based on new <u>low metalicity model</u> AGSo₅ (factor ~2):

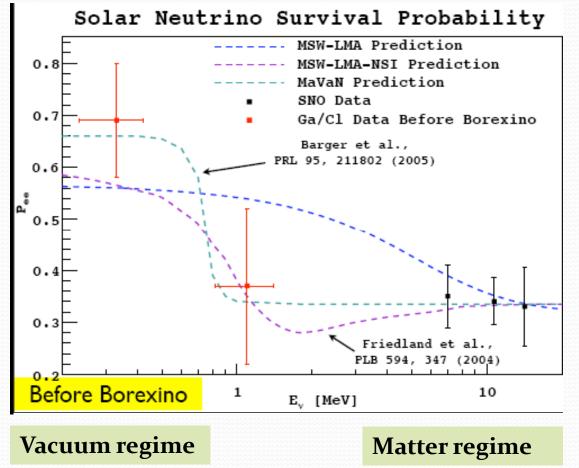
Solar –v survival probability <u>BEFORE BOREXINO</u>

Low energy neutrinos (pp):

flavor change dominated by vacuum oscillations;

High energy neutrinos (8B):

Resonant oscillations in matter (MSW effect):


Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region (7Be):

Decrease of the v_e survival probability (P_{ee})

Transition region of 1-2 MeV: First time observed by Borexino

Solar –v survival probability <u>BEFORE BOREXINO</u>

Low energy neutrinos (pp):

flavor change dominated by vacuum oscillations;

High energy neutrinos (8B):

Resonant oscillations in matter (MSW effect):

Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region (7Be):

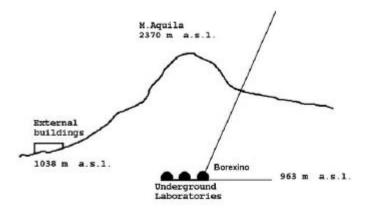
Decrease of the v_e survival probability (P_{ee})

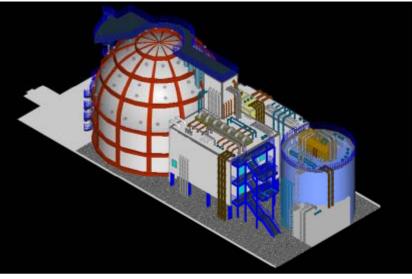
Transition region of 1-2 MeV: First time observed by Borexino

Scientific goals of Borexino

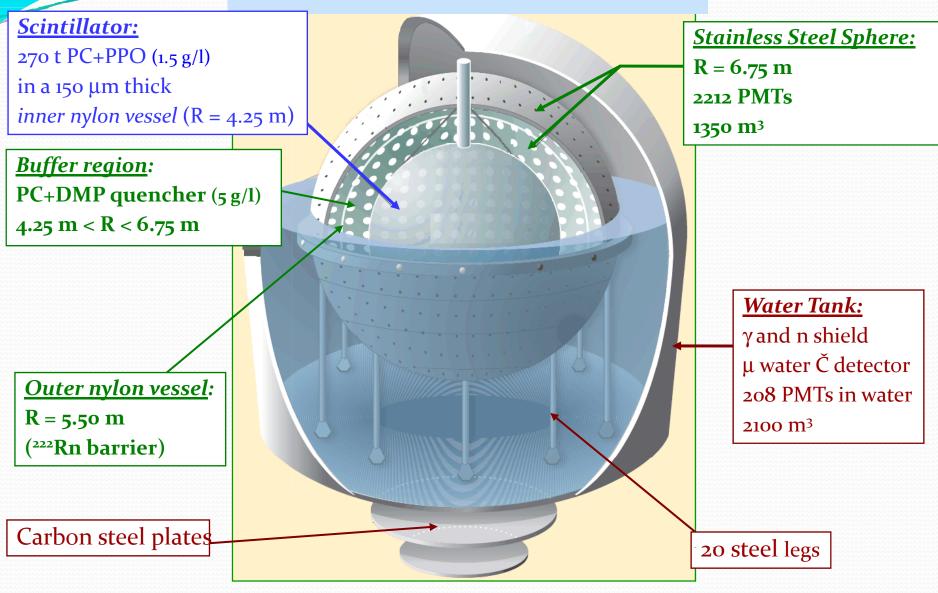
- The first real-time measurement of sub-MeV solar neutrinos;
- The first simultaneous measurement of solar neutrinos from the transition region (⁷Be-v two measurements published) and from the matter-enhanced oscillation region (⁸B-v the first measurement below 5 MeV submitted)
- Precision measurement (at or below the level of 5%) of the ⁷Be-v rate: to test the SSM and MSW-LMA solution of the Standard Solar Problem as well as the balance between the neutrino and photon luminosity of the Sun;
- Check the 7% **seasonal variation** of the neutrino flux (confirm solar origin);
- Under study: first measurement of the CNO neutrinos (sun metallicity controversy);
- Under study: pep neutrinos indirect constrain on the pp-flux;
- High energy tail of *pp* neutrinos;
- Antineutrinos and **geoneutrinos**;
- Supernovae neutrinos and antineutrinos;

Detection principles in Borexino


- Neutrino elastic scattering on electrons of liquid scintillator;
- Scattered electrons cause the scintillation light production;
- Advantages:
 - Low energy threshold (o.2 MeV);
 - Good energy resolution;
 - Good position reconstruction;
- Drawbacks
 - Info about the neutrino directionality is lost;
 - v-induced events can't be distinguished from the events of β/γ natural radioactivity;


Extreme radiopurity is a must!

Experimental site



Borexino is located at the **Laboratori Nazionali del Gran Sasso**, near
L'Aquila, shielded by 1400 m of
Rocks (~3500 m water equivalent)

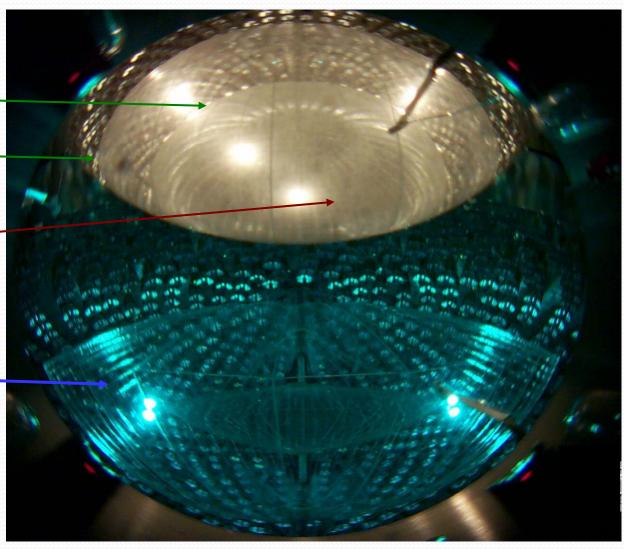
Borexino Detector

ICPP - Istanbul - October 2008

Filling 1/3

End October 2006

Nylon Vessels

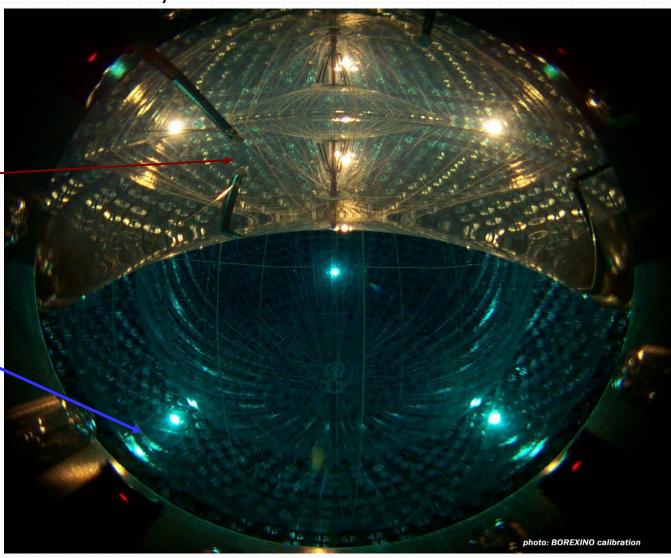

Inner: 8.5 m

Outer: 11.0 m

LAKN – Low Argon and Krypton Nitrogen

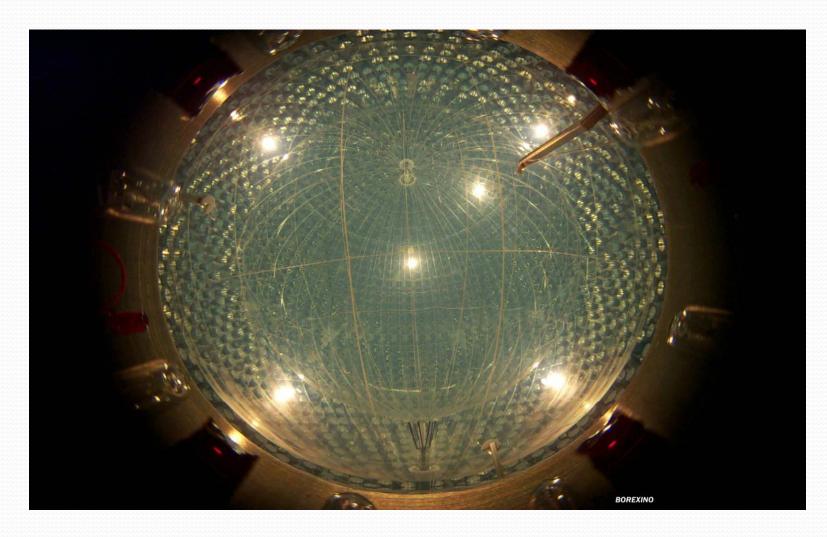
<u>Ultra-pure water</u>

Foto taken with one of 7 CCD cameras placed inside the detector


ICPP - Istanbul - October 2008

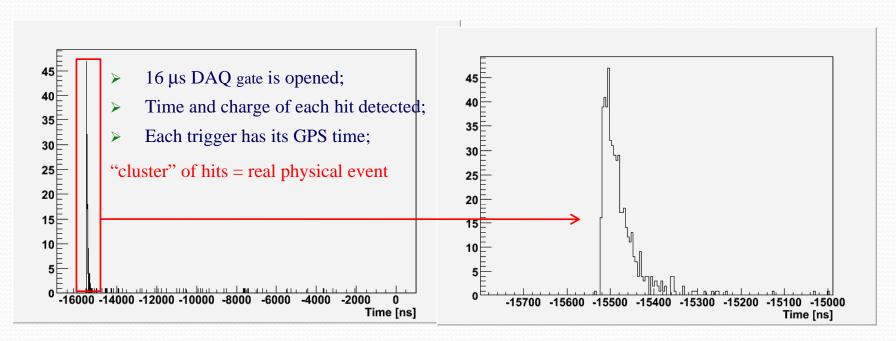
Filling 2/3

March 2007


Liquid scintillator

Ultra-pure water

ICPP - Istanbul - October 2008


Detector filling completed on May 15th, 2007

ICPP - Istanbul - October 2008

Data acquisition and data structure

- Charged particles and γ produce scintillation light: photons hit inner PMTs;
- DAQ trigger: > 25 inner PMTs (from 2212) are hit within 60-95 ns:

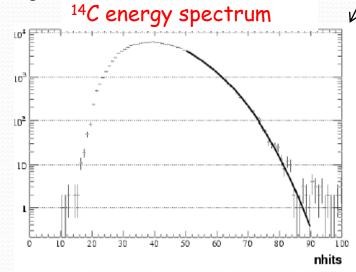
• Outer detector gives a muon veto if at least 6 outer PMTs (from 208) fire;

Detector performances

Lighth yield

1) 14 C spectrum, β -decay 156 keV end point;

2) ¹¹C spectrum, β + decay 960 keV, triple coincidence with muon and neutron;


3) Global spectral fit (14C, 210Po, 7Be edge);

taking into account quenching factor

Energy resolution: 10% @ 200 keV

8% @ 400 keV 6% @ 1000 keV

Spatial resolution: 35 cm @ 200 keV (scaling as $N_{ne}^{-1/2}$) 16 cm @ 500 keV

Fiducial volume definition

- the nominal Inner Vessel radius: 4.25 m (278.3 tons of scintillator)
- how to define fiducial volume of 100 tons?
 - 1) rescaling background components known to be uniformly distributed within the scintillator (14 C bound in scintillator itself, capture of μ -produced neutrons on protons)
 - 2) using the sources with known position:

 (Th emitted by the IV-nylon, γ external background, teflon diffusers on the IV surface)

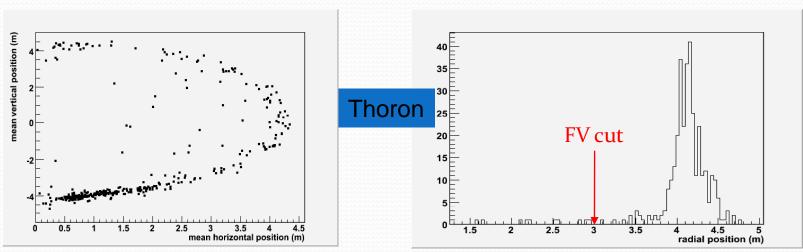
Background: ²³²Th and ²³⁸U content

Assuming secular equilibrium: —

²³²Th chain

²³⁸U chain

$$\tau = 432.8 \text{ ns}$$
²¹²Bi $\xrightarrow{\beta}$ ²¹²Po $\xrightarrow{\alpha}$ ²⁰⁸Pb
^{2.25} MeV ~800 keV eq.


$$\tau = 236 \,\mu\text{s}$$
²¹⁴Bi $\xrightarrow{\beta}$ ²¹⁴Po $\xrightarrow{\alpha}$ ²¹⁰Pb ~700 keV eq.

 $(6.8\pm1.5)\times10^{-18}$ g(Th)/g

Bulk contamination

 $(1.6 \pm 0.1) \times 10^{-17} g(U)/g$

Only few bulk candidates in the FV

ICPP - Istanbul - October 2008

Background: ²¹⁰Po and ⁸⁵Kr

210Po: end of ²³⁸U chain :

$$\beta^{-}(61 \text{ keV})$$
 $\beta^{-}(1.2 \text{MeV})$ α
 2^{10}Pb \rightarrow 2^{10}Bi \rightarrow 2^{10}Po \rightarrow 2^{06}Pb
 $t_{1/2}$ 22.3 y 5.01 d 138.38 d stable

- The bulk ²³⁸U and ²³²Th contamination is negligible
- The ²¹⁰Po background is NOT related neither to ²³⁸U nor to ²¹⁰Pb contamination
- May 2007 ~80 counts/day, $\tau = 204.6$ days
- 210Bi no direct evidence ---> free parameter in the total fit, cannot be disentangled, in the 7Be energy range, from the CNO

85 Kr β-decay energy spectrum similar to the ⁷Be recoil electron

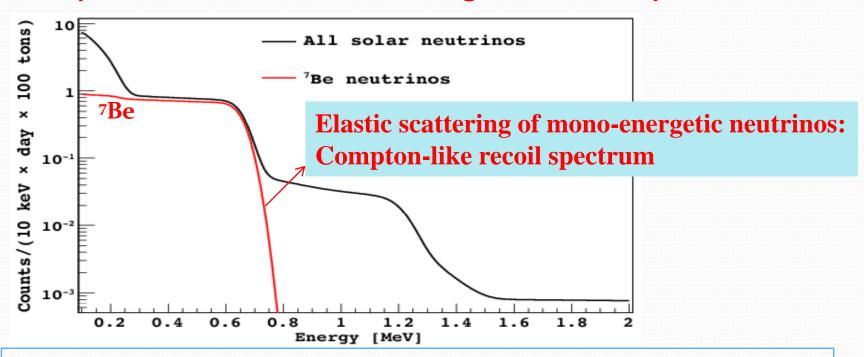
85
Kr $\xrightarrow{\beta}$ 85 Rb 85 Rb

$$\tau = 10.76 \text{ y} - \text{BR}$$
: 99.56%

⁸⁵Kr is studied through:

85
Kr $\xrightarrow{\beta}$ 85 mRb $\xrightarrow{\gamma}$ 85 Rb $\xrightarrow{173 \text{ keV}}$ 85 Rb

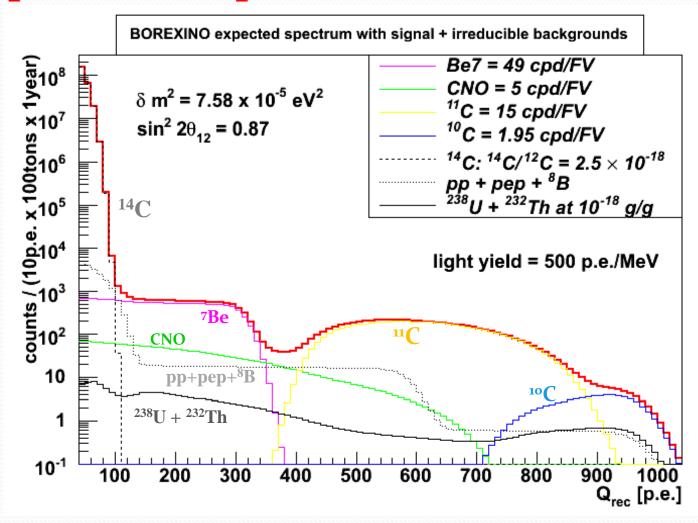
$$\tau = 1.46 \text{ ms} - BR:0.43\%$$

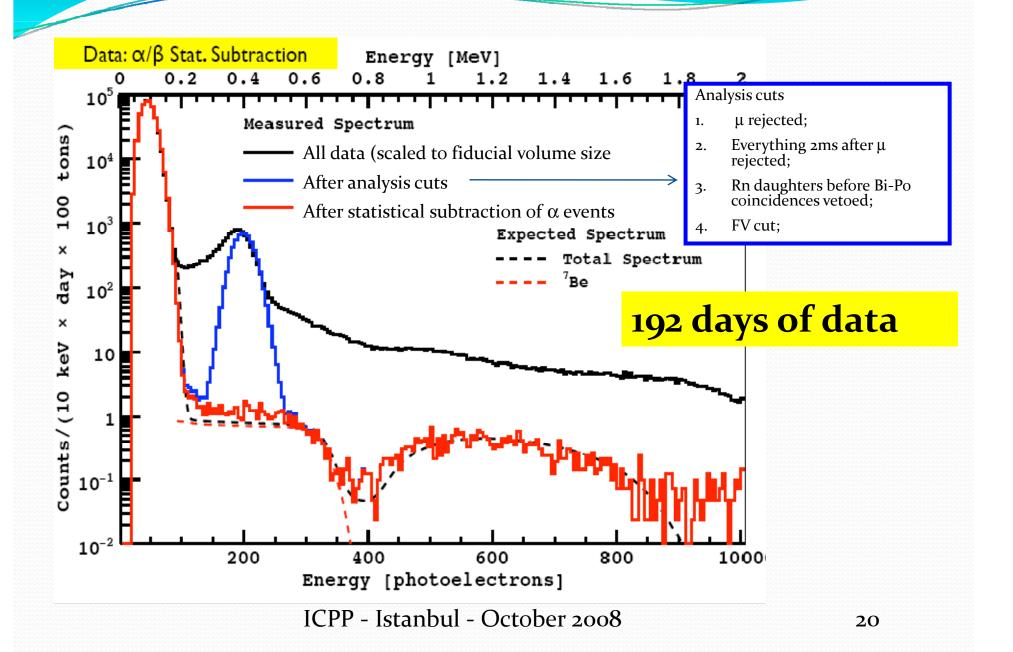

Only 8 (β – γ) coincidences selected in the inner vessel in 192 days

the 85Kr contamination (29±14) counts/day/100 ton

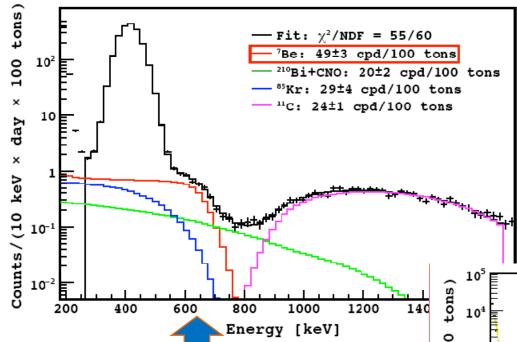
More statistics is needed → taken as a free parameter in the total fit

Simulated spectrum of solar neutrinos

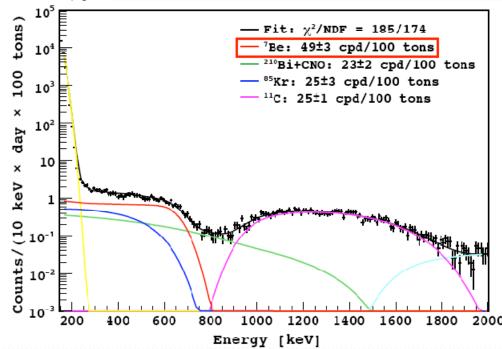

(detected via elastic scattering off electrons)



A measured neutrino flux depends on:

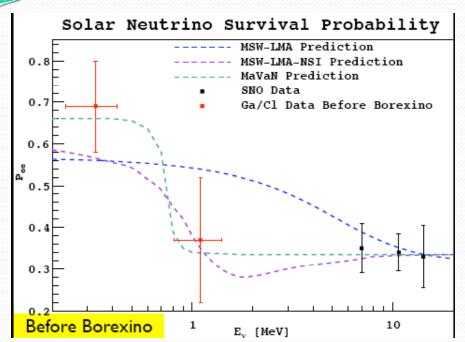

- neutrino flux produced in the Sun (SSM: Standard Solar Model)
- neutrino survival probability (LMA Large Mixing Angle solution in the $\Delta m^2 \sin^2 2\theta$ parameter space)
- interaction cross section (cca. 10⁻⁴⁴ cm²!)

Expected MC spectrum: signal+irreducible background


Spectral fit

- •Fit between 100-800 p.e.;
- •Light yield: a free fit parameter;
- Light quenching included (Birks' parametrization);
- ¹⁴C, ¹¹C and ⁸⁵Kr free fit parameters;

•Fit to the spectrum **without** and **with** α–subtraction is performed giving consistent results


Systematic uncertainties

Source	Syst.error (1σ)
Tot. scint. mass	± 0.2%
Live Time	± 0.1%
Efficiency of Cuts	± 0.3%
Detector Resp.Function	± 6%
Fiducial Mass	± 6%
ТОТ	± 8.5%

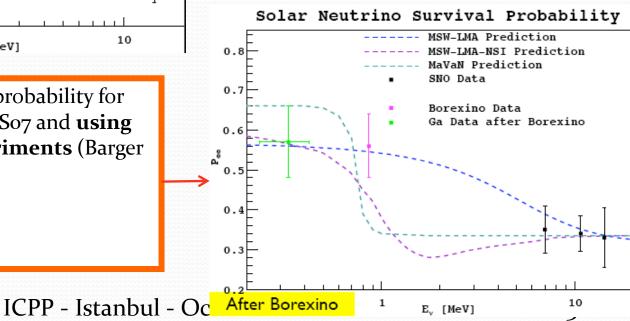
 $49 \pm 3_{\text{stat}} \pm 4_{\text{sys}} \text{ cpd/100 tons}$

	Expected rate (cpd/100 t)
No oscillation	75 ± 4
BPS07(GS98) HighZ	48 ± 4
BPS07(AGS05) LowZ	44 ± 4

No-oscillation hypothesis rejected at 4σ level

We determine the survival probability for ⁷Be and pp-v_e, assuming BPSo₇ and **using input from all solar experiments** (Barger *et al.*, PR (2002) 88, 011302)

$$P_{ee}$$
 (7Be) = 0.56 ± 0.08

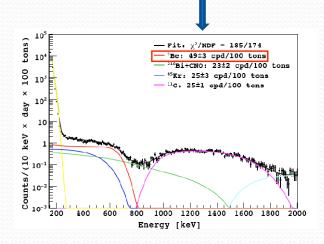

$$P_{ee}(pp) = 0.57 \pm 0.09$$

Under the assuptions of High-Z SSM (BPS 07) the ⁷Be rate measurement corresponds to

$$P_{ee}$$
 (7Be) = 0.56 o.1 (1 σ)

which is consistent with the number derived from the global fit to all solar and reactor experiments (S. Abe et al., arXiv: 0801.4589v2)

$$P_{ee}$$
 (7Be) = 0.541 ± 0.017

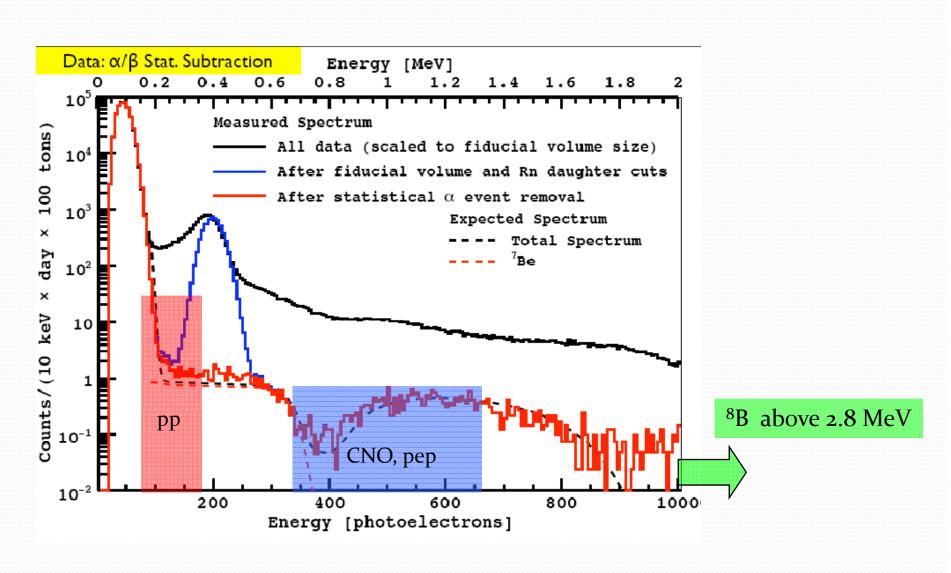


Neutrino magnetic moment

SM with $m_v = 0$: $\mu_v = 0$

T – kinetic energy of scattered e E_{ν} – neutrino energy

SM with $m_{\nu} > 0$: $\mu_{\nu} > 0$, additional EM term influencing the cross section and thus the spectral shape


$$\left(\frac{d\sigma}{dT}\right)_{W} = \frac{2G_{F}^{2}m_{e}}{\pi} \left[g_{L}^{2} + g_{R}^{2} + \left(1 - \frac{T}{E_{v}}\right)^{2} - g_{L}g_{R}\frac{m_{e}T}{E_{v}^{2}}\right]$$

$$\left(\frac{d\sigma}{dT}\right)_{EM} = \mu_{\nu}^{2} \frac{\pi \alpha_{em}^{2}}{m_{e}^{2}} \left(\frac{1}{T} - \frac{T}{E_{\nu}}\right)$$
 Sensitivity enhanced @ low energies

Estimate8	Method	90% C.L. 10 ⁻¹¹ μ _B
SuperK	⁸ B above 5 MeV	< 11
Montanino et al.	⁷ Be (Borexino data)	< 8.4
GEMMA	Reactor anti-v	< 5.8
Borexino	⁷ Be	< 5.4

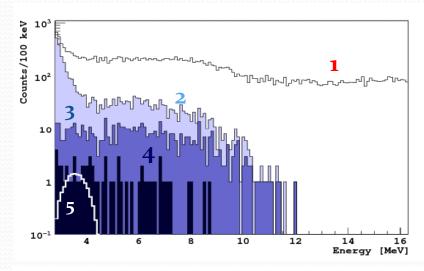
Currently the best experimental limit!

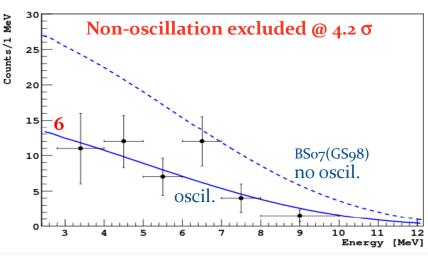
What can Borexino say about other solar v sources?

⁸B-V fluxes (arXiv 0808.2868)

- The first simultaneous measurement of solar-v from the **transition region** (7Be-v) and from the matter-enhanced oscillation region (8B-v);
- The first measurement of ⁸B-v in real time below 5 MeV;

Measurement of the solar ⁸B neutrino flux with 246 live days of Borexino and observation of the MSW vacuum-matter transition

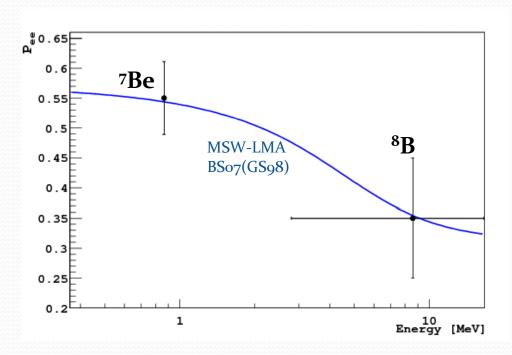

G. Bellini, ¹ J. Benziger, ² S. Bonetti, ¹ M. Buizza Avanzini, ¹ B. Caccianiga, ¹ L. Cadonati, ³ F. Calaprice, ⁴ C. Carraro, ⁵ A. Chavarria, ⁴ F. Dalnoki-Veress, ⁴ D. D'Angelo, ¹ H. de Kerret, ⁶ A. Derbin, ⁷ A. Etenko, ⁸ K. Fomenko, ⁹ D. Franco, ¹ C. Galbiati, ⁴ S. Gazzana, ¹⁰ M. Giammarchi, ¹ M. Goeger-Neff, ¹¹ A. Goretti, ⁴ C. Grieb, ¹², ^a S. Hardy, ¹² Aldo Ianni, ¹⁰ Andrea Ianni, ⁴ M. Joyce, ¹² V. Kobychev, ¹³ G. Korga, ¹⁰ D. Kryn, ⁶ M. Laubenstein, ¹⁰ M. Leung, ⁴ T. Lewke, ¹¹ E. Litvinovich, ⁸ B. Loer, ⁴ P. Lombardi, ¹ L. Ludhova, ¹ I. Machulin, ⁸ S. Manecki, ¹² W. Maneschg, ¹⁴ G. Manuzio, ⁵ F. Masetti, ¹⁵ K. McCarty, ⁴ Q. Meindl, ¹¹ E. Meroni, ¹ L. Miramonti, ¹ M. Misiaszek, ¹⁶, ¹⁰ D. Montanari, ¹⁰, ⁴ V. Muratova, ⁷ L. Oberauer, ¹¹ M. Obolensky, ⁶ F. Ortica, ¹⁵ M. Pallavicini, ⁵ L. Papp, ¹⁰ L. Perasso, ¹ S. Perasso, ⁵ A. Pocar, ⁴, ⁵ R.S. Raghavan, ¹² G. Ranucci, ¹ A. Razeto, ¹⁰ P. Risso, ⁵ A. Romani, ¹⁵ D. Rountree, ¹² A. Sabelnikov, ⁸ R. Saldanha, ⁴ C. Salvo, ⁵ S. Schönert, ¹⁴ H. Simgen, ¹⁴ M. Skorokhvatov, ⁸ O. Smirnov, ⁹ A. Sotnikov, ⁹ S. Sukhotin, ⁸ Y. Suvorov, ^{1,8} R. Tartaglia, ¹⁰ G. Testera, ⁵ D. Vignaud, ⁶ R.B. Vogelaar, ¹² F. von Feilitzsch, ¹¹ M. Wojcik, ¹⁶ M. Wurm, ¹¹ O. Zaimidoroga, ⁹ S. Zavatarelli, ⁵ and G. Zuzel¹⁴ (Borexino Collaboration)


¹Dipartimento di Fisica, Università degli Studi e INFN, 20133 Milano, Italy ²Chemical Engineering Department, Princeton University, Princeton, NJ 08544, USA ³Physics Department, University of Massachusetts, Amherst, MA 01003, USA ⁴Phusics Department, Princeton University, Princeton, NJ 08514, USA ⁵Dipartimento di Fisica, Università e INFN, Genova 16146, Italy ⁶Laboratoire AstroParticule et Cosmologie, 75231 Paris cedex 13, France ⁷St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia ⁸RRC Kurchatov Institute, 123182 Moscow, Russia ⁹ Joint Institute for Nuclear Research, 141980 Dubna, Russia ¹⁰INFN Laboratori Nazionali del Gran Sasso, SS 17 bis Km 18+910, 67010 Assergi (AQ), Italy ¹¹Physik Department, Technische Universität Muenchen, 85747 Garching, Germanu ¹² Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA ¹⁵Kiev Institute for Nuclear Research, 06380 Kiev, Ukraine ¹⁴Max-Planck-Institut f¨ur Kernphysik, 69029 Heidelberg, Germany ¹⁵Dipartimento di Chimica, Università e INFN, 06123 Perugia, Italy ¹⁶M. Smoluchowski Institute of Physics, Jagiellonian University, 30059 Krakow, Poland (Dated: August 21, 2008)

submitted to PRL

⁸B-V fluxes (see arXiv 0808.2868 for details)

Cut	Counts 2.8-16.3 MeV	Counts 5.0-16.3 MeV	Indx
None	20449	14304	1
Muon cut	3363	1135	2
Neutron cut	3280	1114	
FV cut	567	372	3
Cosmogenic cut	71	26	
¹⁰ C removal	65	26	
²¹⁴ Bi removal	62	26	4
Expected ²⁰⁸ Tl	14 ± 3	О	5
Measured ⁸ B-v	48 <u>+</u> 8	26 <u>+</u> 5	6
BSo ₇ (GS ₉ 8) ⁸ B-v	50 ± 5	25 ± 3	
BSo ₇ (AGSo ₅) ⁸ B-v	40 <u>+</u> 4	20 <u>+</u> 2	


⁸B-V fluxes (see arXiv 0808.2868 for details)

First real-time measurement above 2.8 MeV:

$$\Phi_{>2.8 MeV} = (0.26 \pm 0.04 \text{ stat } \pm 0.02 \text{ sys}) \text{ counts/day } /100 \text{ tons}$$

Above 5 MeV in agreement with SNO and SuperK:

$$\Phi_{>2.8 \, MeV} = (0.14 \pm 0.03 \, \text{stat} \, \pm 0.01 \, \text{sys}) \, \text{counts/day} \, /100 \, \text{tons}$$

BS05 (GS98), HighZ

First simultaneous measurement in both vacuum-dominated and matter-enhanced regions

Conclusions

DONE

- Borexino performed the first real-time measurement of solar-v below the barrier of natural radioactivity (4 MeV);
- The two measurements reported for ⁷Be-v favor MSW-LMA solution;
- The first real-time measurement of *B-v below 5 MeV (above 2.8 MeV);
- The first **simultaneous** measurement of solar neutrinos from the **transition region** (⁷Be-v) and from **the matter-enhanced oscillation region** (⁸B-v);
- **Best limits for pp- and CNO-v**, combining information from all solar and reactor experiments;

TO BE DONE

- Precision measurement (at or below the level of 5%) of the ⁷Be-v rate;
- Check the 7% seasonal variation of the neutrino flux (confirm solar origin);
- Under study: measurement of the CNO, pep and high-energy pp neutrinos;
- Strong potential in antineutrinos (geoneutrinos, reactor, from the Sun) and in supernovae neutrinos and antineutrinos;

In memoriam:

- •Engin Arik
- Berkol Dogan
- Engin Abat
- Senel Boydag
- •Iskender Hikmet
- •Mustafa Fidan

Thank you!!

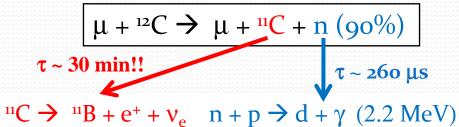
Additional slides

Constraints on pp- & CNO-v fluxes after the ⁷Be measurement

- •It is possible to combine the results obtained by Borexino on 7 Be flux with those obtained by other experiments to constraint the fluxes of pp and CNO v_e ;
- •The measured rate in Clorine and Gallium experiments can be written as:

$$\mathbf{R}_{k} = \sum_{i,k} \mathbf{f}_{i} \mathbf{R}_{i,k} \mathbf{P}_{ee}^{i,k}$$

```
\begin{split} &f_i = \frac{\phi_i \, (measured)}{\phi_i \, (predicted)} \\ &R_{i,k} = expected \ rate \ of \ source \ ''i'' \ in \ experiment \ ''k'' (no \ oscill.) \\ &P_{ee}^{e,k} = average \ survival \ probability \ for \ source \ ''i'' \ in \ experiment \ ''k'' \end{split}
```

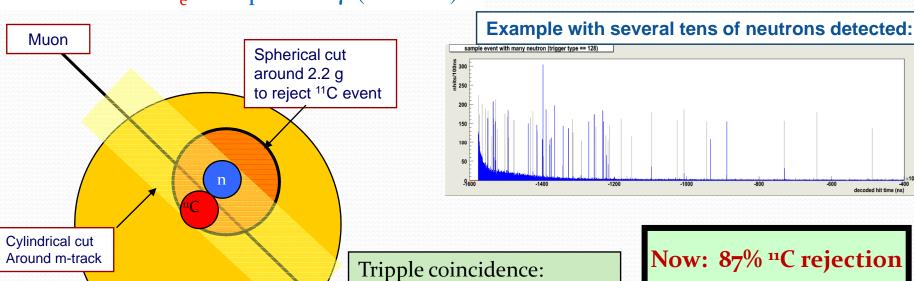

- •R_{i,k} and P_{ee}^{i,k} are calculated in the hypothesis of **high-Z SSM and MSW LMA**, ;
- •R_k are the rates actually measured by Clorine and Gallium experiments;
- $f_{8B} = 0.87 \pm 0.07$, measured by SNO and SuperK;
- $f_{7Be} = 1.02 \pm 0.10$ is given by **Borexino results**;
- •Performing a χ^2 based analysis with the additional luminosity constraint;

$$f_{pp} = 1.005^{+0.008}_{-0.020} (1\sigma)$$

 $f_{CNO} < 3.80 (90 \% C.L.)$

Which is the best determination of pp flux (with luminosity constraint)

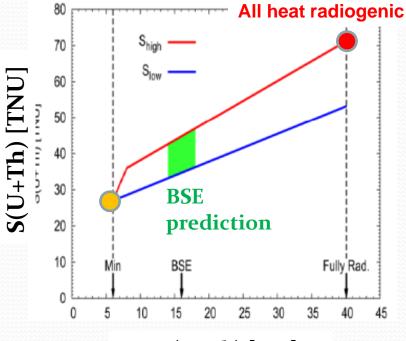
Future: pep and CNO-v fluxes


The main background for pep and CNO analysis is "C

- electronics improvement to detect all the neutrons produced by a muon
 - Changes in the electronics (Dec 07): after each muon, **1.6 ms gate opened**

Still in progress

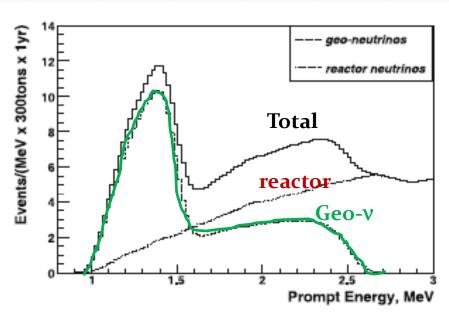
- FADC implementation in parallel;



 μ , **2***511 keV, γ (2.2 MeV)

Borexino potential on geo-neutrinos

Signal H(U+Th) from Uranium and Thorium geo-neutrinos at Borexino haips of U & Thand K)


All heat radiogenic Prompt signal energy spectrum (model)

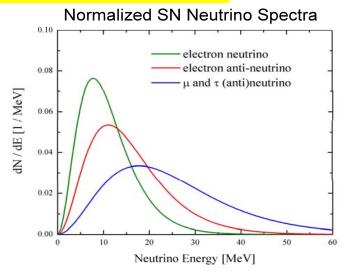
Heat (U+Th) [TW]

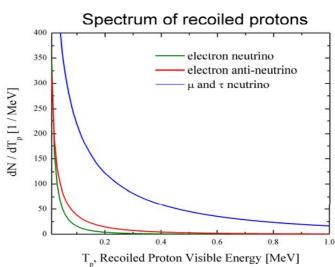
Mantovani et al., TAUP 2007

 $TNU = 1 \text{ event } / 10^{3^2} \text{ target proton } / \text{ year}$ Np (Borex) = 1.8 10³¹ target proton

5.7 events from reactors (in geo-v E range)

BSE: 6.3 events from geoneutrinos


(per year and 300 tons, $\varepsilon = 80\%$, 1-2.6 MeV) (Balata *et al.*, 2006, ref. model Mantovani *et al.*, 2004)


(Balata *et al.*, 2006, ref. model Mantovani *et al.*, 2004)

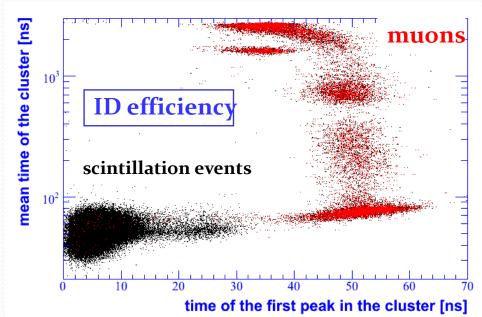
3σ evidence of geoneutrinos expected in 2 years of data

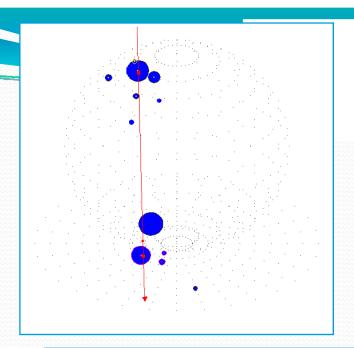
Borexino potential on supernovae neutrinos

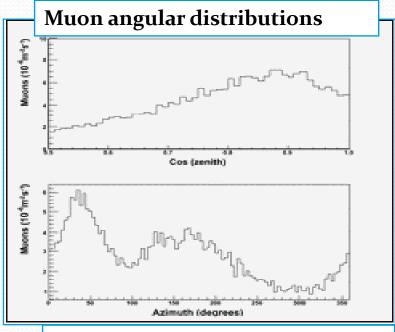
Standard SN @ 10kpc

Borexino $E_{tresh} = 0.25 \text{ MeV}$ target mass 300 t

Detection channel	N events
$(E_{v} > 0.25 \text{ MeV})$	5
$\begin{array}{c} \textbf{Electron anti-} \\ \textbf{neutrinos} \\ \textbf{(E}_{\nu} > \textbf{1.8 MeV)} \end{array}$	78
ν-p ES (E _v > 0.25 MeV)	52
12 C(v,v) 12 C* (E γ = 15.1 MeV)	18
12 C(anti-v,e ⁺⁾¹² B ($E_{anti-v} > 14.3 \text{ MeV}$)	3
12 C(v,e-) 12 N (E _v > 17.3 MeV)	9

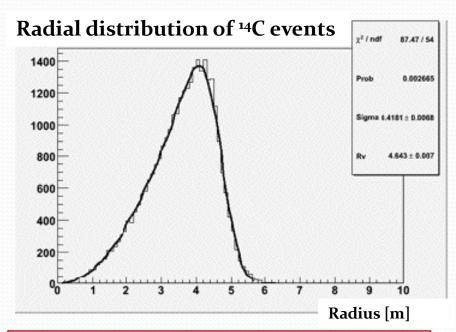

Can be used as an early alarm

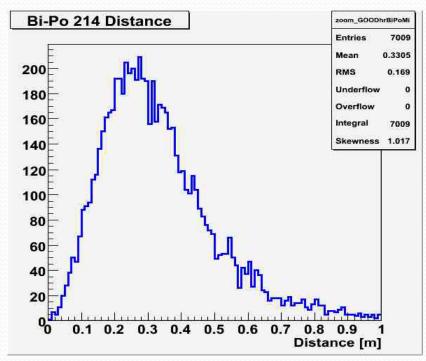

Borexino will enter SNEWS soon


anbul - October 2008

Cosmic µ's

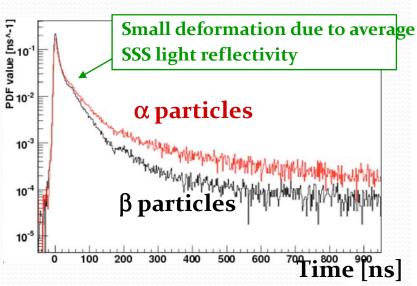
- $\boldsymbol{\mu}$ are identified by the OD and by the ID
 - OD eff: ~ 99%
 - ID analysis based on pulse shape variables
 - Deutsch variable: ratio between light in the concentrator and total light
 - Cluster mean time, peak position in time
 - Estimated overall rejection factor > 10⁴ (still preliminary)
- After cuts, m not a relevant background for ⁷Be
 - Residual background: < 1 count /day/ 1 00 t

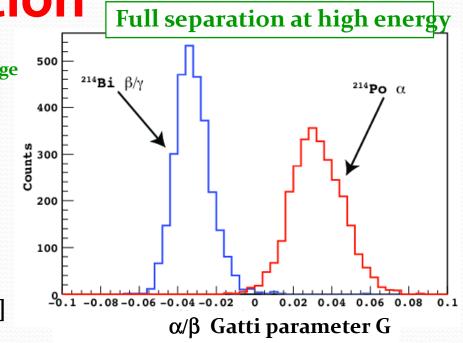



NOW 2008, Otranto, 6-13 September 20 Stanbul - October 20 Muon flux:(1.21±0.05)h-1m-2

Position reconstruction algorithms

- Base on time of flight fit to hit-time distribution
- developed with MC, tested and validated in Borexino prototype CTF
- cross checked and tuned in Borexino on selected events (14C, 214Bi-214Po, 11C)




¹⁴C "bound" in the scintillator: homogeneous The fit is compatible with the expected r²-like shape with R=4.25m.

Spatial resolution: 35 cm at 200 keV 16 cm at 500 keV ICPP - Istanbul - (scaling as $N_{p.e.}^{-1/2}$)

α/β discrimination

$$\overline{\alpha}_i, \overline{\beta}_i \rightarrow$$
 average pulse shapes

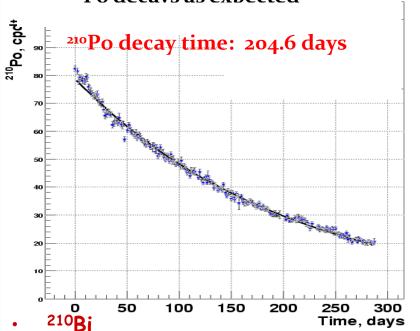
$$P_{i} = \frac{\left(\overline{\alpha}_{i} - \overline{\beta}_{i}\right)}{\left(\overline{\alpha}_{i} + \overline{\beta}_{i}\right)} \rightarrow \text{for i-time interval of 2 ns}$$

$$G = \sum_{i} P_{i}S_{i}$$
 S_{i} \rightarrow signal shape within a given Δt (2 ns)

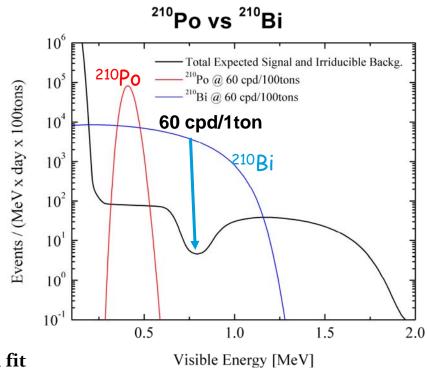
Techinques towards low-radioactivity

- Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)
- Rapid transport of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (⁷Be)
- Underground purification plant to distill scintillator components.
- Gas stripping of scintlllator with special nitrogen free of radioactive ⁸⁵Kr and ³⁹Ar from air
- All materials electropolished SS or teflon, precision cleaned with a dedicated cleaning module

Background: ²¹⁰Po

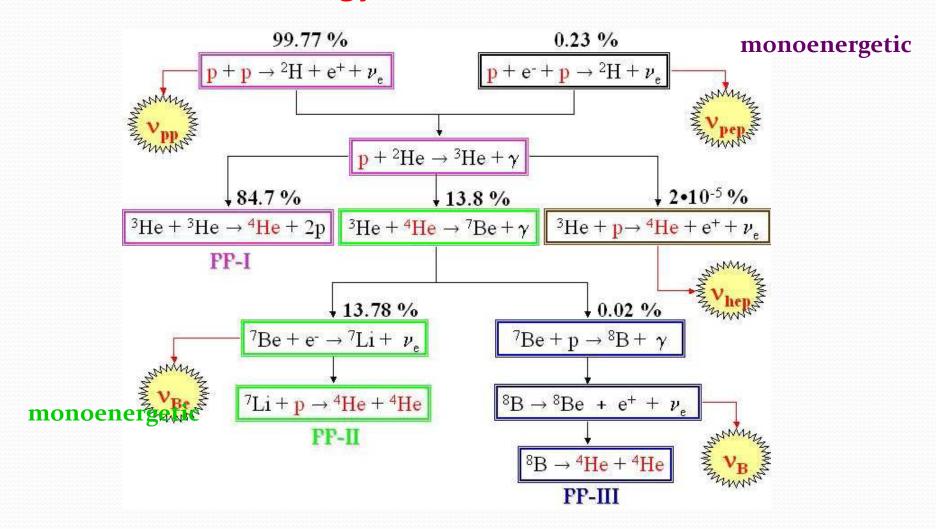

End of ²³⁸U chain:

$$\beta^{-}(61 \text{ keV})$$
 $\beta^{-}(1.2 \text{MeV})$ α


210Pb -> 210Bi -> 210Po -> 206Pb

 $t_{1/2}$ 22.3 y 5.01 d 138.38 d stable

- Not in equilibrium with ²¹⁰Pb!
- 210 Po decavs as expected



- The bulk ²³⁸U and ²³²Th contamination is negligible
- The ²¹⁰Po background is NOT related neither to ²³⁸U nor to ²¹⁰Pb contamination

no direct evidence----> free parameter in the total fit cannot be disentangled, in the ⁷Be energy range, from the CNO

Proton-proton cycle: the main energy source in the Sun

NOW 2008, Otranto, 6-13 Septembra do Kilambal Milano, Way 8 Livia Ludhova (Borexino collaboration)
Borexino @ Universita di Villano, Way 8 Livia Ludhova (Borexino collaboration)