Search for the Standard Model $H \rightarrow \gamma \gamma$ decays with the ATLAS detector at the LHC

Jean-François MARCHAND on behalf of the ATLAS Collaboration

Laboratoire d'Annecy-le-Vieux de Physique des Particules

ICPP Istanbul - 29/10/2008

Introduction

• $H \rightarrow \gamma \gamma$ is one of the most promising discovery channels for a SM Higgs boson in low mass region (114 < $m_{
m H}$ < 150GeV)

• Small branching ratio $(2.23 \cdot 10^{-2} \text{ for } m_H = 120 \text{GeV})$

BUT

- Simple signature
- Very good mass resolution (pprox 1.5 GeV)
- → Need good photon reconstruction/identification
- → Need proper conversion handling
 - \rightarrow Need good photons direction measurement
- QCD higher order corrections are considered for both signal and background
- Contribution of fragmentation from hard partons to photons taken into account
- Inclusive analysis and diphoton production in association with jets considered
- Significance computed with max. likelihood fit compared to event counting
- Studies based on a realistic detector simulation of MC signal and background

Signal and background

Higgs boson production • gg fusion • Vector Boson Fusion (VBF) • Associated production with W, Z or tt • Q0000000000 • W.Z • W.Z • Q000000000000 • ATLAS • gg + H • qqH • rellminary • WH • WH

Background

• Irreducible : $\gamma\gamma(+\text{jets})$ (Born, fragmentation processes, box)

Reducible : γ/jet(s), jet(s)/jet(s)

Photon reconstruction and identification

Reconstruction and calibration

- Photon reconstructed from FM clusters. (Barrel : 3×7 in $\eta\times\phi$ for converted photons, 3×5 for unconverted photons, EndCap : 5×5)
- Cluster position corrected for known systematic biases
- weights to correct:
 - → Energy loss in front of the calorimeter
 - → Longitudinal leakage
 - → Energy loss outside the cluster
- Different weights for unconverted photons and converted photons

Identification and isolation

- To reduce background from jets faking photons below irreducible background
- Identification with cut based method (on shower shape parameters)
 - → Middle layer and hadronic calorimeter : Jet rejection with wide showers
 - \rightarrow Strips Fine segmentation : γ/π^0 separation
- Isolation (using tracks)

Conversion reconstruction

- MC studies : 57% of $H \rightarrow \gamma \gamma$ events have ≥ 1 conversion ($R_{\text{conv}} < 800 \text{mm}$)
- 2 types of converted photons are used :

- Double track conversions → Reconstructed by a vertexing algorithm using 2 tracks with opposite charges as input
- Single track conversions → Separation of primary electron from conversion electron with the signal in the first pixel layer
- Reconstruction efficiency $\approx 66.4\%$ for conversions with $R_{\rm conv} < 400mm$ (with the reconstruction software version used for this analysis)

Pointing - Primary Vertex

- Precise measurement of the primary vertex position is very important to improve the Higgs mass resolution
- Iterative method to measure photons directions Linear fit using :
 - → Multi-layer structure of the EM calorimeter
 - ightarrow Position of the conversion vertex used when possible
 - ightarrow And reconstructed primary vertex position computed by the tracker and selected among high luminosity vertices

Invariant mass and resolution

• Mass resolution is determined from an asymetric Gaussian fit ($[-2\sigma, +3\sigma]$) on the invariant di-photon mass peak

m _H	120GeV		130GeV	
	No pileup Pileup		No pileup	Pileup
Mass fitted (GeV)	119.46	119.47	129.47	129.41
σ_m (GeV)	1.46	1.52	1.54	1.62

• The relative mass resolution σ_m/m is close to 1.2% degrading by a few percent when $10^{33} {\rm cm}^{-2} {\rm s}^{-1}$ pileup is added

Inclusive analysis

- $0<|\eta|<1.37,\ 1.52<|\eta|<2.37$ (motivated by offline photon identification and fake rate) \Rightarrow Also applied in H+1jet and H+2jets analysis
- $p_T^{\gamma_1} > 40 \text{GeV}$, $p_T^{\gamma_2} > 25 \text{GeV}$ (obtained from optimization studies)

Expected cross sections:

σ_{signal}	25.4 fb
$\sigma_{background}$	947 fb

in a mass window of $m_{\gamma\gamma} \pm 1.4\sigma$

$$S/B = 0.02$$

K-factor applied : $K_{\gamma i} = 2.1$ and $K_{ii} = 1.3$

H+1jet analysis

Leading jet in $gg \to Hj$ and VBF tends to be harder and more separated from $\gamma\gamma$ than from background events

- $p_T^{\gamma_1} > 45 \text{GeV}, p_T^{\gamma_2} > 25 \text{GeV}$
- ullet \geq 1 hadronic jet with $p_T^{
 m jet}$ > 20GeV in $|\eta|$ < 5 (motivated by the ability to calibrate hadronic jets in ATLAS)
- $m_{\gamma\gamma \rm jet} > 350 {\rm GeV}$

$VBF + more jets with <math>gg \rightarrow H$

Expected cross sections:

	Inclusive	H+1jet
$\sigma_{\sf signal}$	25.4 fb	4.0 fb
$\sigma_{background}$	947 fb	49 fb

in a mass window of $m_{\gamma\gamma}=120\pm 2{\sf GeV}$

$$S/B = 0.08$$

H+2jets analysis

- $p_T^{\gamma_1} > 50 \text{GeV}$, $p_T^{\gamma_2} > 25 \text{GeV}$
- ullet \geq 2 hadronic jets with $p_T^{
 m jet_1} >$ 40GeV, $p_T^{
 m jet_2} >$ 20GeV in $|\eta| <$ 5
- Jets in opposite direction : $\eta_1\eta_2<0$ (VBF process at LO produces 2 high p_T and relatively forward jets in opposite hemisphere)
- ullet $\Delta\eta_{jj}>3.6$ Pseudorapidity gap and invariant mass of signal jets tend to be significantly
- $m_{ii} > 500 \text{GeV}$ | larger than those expected for background processes
- Photons in between tagging jets
- Central jet veto : $p_T > 20 \text{GeV}$, $|\eta| < 3.2$

Mainly VBF

H+2jets analysis

- $p_T^{\gamma_1} > 50 \text{GeV}$, $p_T^{\gamma_2} > 25 \text{GeV}$
- ullet \geq 2 hadronic jets with $p_T^{\mathrm{jet}_1} >$ 40GeV, $p_T^{\mathrm{jet}_2} >$ 20GeV in $|\eta| < 5$
- Jets in opposite direction : $\eta_1\eta_2<0$ (VBF process at LO produces 2 high p_T and relatively forward jets in opposite hemisphere)
- ullet $\Delta\eta_{jj}>3.6$ Pseudorapidity gap and invariant mass of signal jets tend to be significantly
- $m_{ii} > 500 \text{GeV}$ | larger than those expected for background processes
- Photons in between tagging jets
- Central jet veto : $p_T > 20 \text{GeV}$, $|\eta| < 3.2$

Mainly VBF

Expected cross sections:

	Inclusive	H+1jet	H+2jets
σ_{sig}	25.4 fb	4.0 fb	0.97 fb
$\sigma_{\sf bkg}$	947 fb	49 fb	1.95 fb

in a mass window of $m_{\gamma\gamma}=120\pm 2{\sf GeV}$

$$S/B = 0.5$$

$H + E_T^{\text{miss}}$ and H + 1 lepton from associated production

Signal : Mainly from $WH \to \ell \nu \gamma \gamma$ and $t \overline{t} H$

, ,

Signal : Mainly from $ZH \rightarrow \nu\nu\gamma\gamma$

 $S/B \approx 1.7$

 $S/B \approx 2$

Expected cross sections:

	Inclusive	H+1jet	H+2jets	$H+E_T^{miss}+1$ lepton	$H+E_T^{miss}$
$\sigma_{\sf sig}$	25.4 fb	4.0 fb	0.97 fb	0.126 fb	0.072 fb
σ_{bkg}	947 fb	49 fb	1.95 fb	0.075 fb	0.036 fb

in a mass window of $m_{\gamma\gamma}=120\pm2(1.8) {\rm GeV}$ for H+ $E_T^{
m miss}+1$ lepton (for H+ $E_T^{
m miss}$)

Maximum-likelihood fit

- Unbinned extended multivariate maximum likelihood fit
- o Takes the advantage of discrimination information from the kinematics and topological properties of $H o \gamma \gamma$ decays

Fit variables

- \bullet $m_{\gamma\gamma}$
- p_{THiggs}
- $|\cos \hat{\theta}^*|$ where θ^* is the photon decay angle in the Higgs rest frame wrt Higgs lab flight direction

Maximum-likelihood fit

Categories used to split data into subsets

- Separate sub-population of events with different properties
- Different categories can have different values of PDF parameters or different PDFs altogether
- Gives finer-grained description of data / Increase significance / Reduces biases from correlations ⇒ Improves the accuracy of the likelihood model

Fit categories

- 3 η categories
- converted/unconverted photons categories
- 3 Higgs production categories :
 H + 0, 1, 2 jets

Discovery potential

• Expected signal significance for 10 fb^{-1} of integrated luminosity (in a mass window of $\pm 1.4\sigma$ around m_H)

Based on event counting

m _H (GeV)	Inclusive	H + 1 jet	H + 2 jets	Combined
120	2.6	1.8	1.9	3.3
130	2.8	2.0	2.1	3.5
140	2.5	1.8	1.7	3.0

 \Rightarrow Combined significance is pprox25% higher than significance of inclusive analysis

Using combined fit

m _H (GeV)	Floating mass	Fixed mass
120	2.8	3.6
130	3.4	4.2
140	3.2	4.0

 \Rightarrow Combined fit with fixed Higgs mass increases the significance by \approx 40% with respect to inclusive analysis

Conclusion

- Combined analysis for H+0jet, H+1jet and H+2jets improves the significance by \approx 25% with respect to inclusive analysis
- Use of an unbinned maximum-likelihood fit has been studied to enhance the expected sensitivity
 - \Rightarrow Enhances the significance by $\approx 40\%$ with respect to inclusive analysis
- 5σ discovery should be possible with integrated luminosity of $20-30fb^{-1}$
- Many improvements since previous studies... and many areas are still going to be improved (conversions...)
- ⇒ And of course : work will be needed to understand the detector performance with first data...

BACKUP

Trigger

- \bullet L1 menu : 2EM13I $\rightarrow \geq$ 2 isolated electron or photon candidates with $E_T=13 \text{GeV}$
- L2 and EF: 2g17i Refine the analysis of L1

Efficiency for the 2g17i menu item to trigger on $H\to\gamma\gamma$ events with $m_H=120{\rm GeV}$ -Normalized with respect to the offline selection

Trigger Level	2g17i Trigger efficiency		
L1	96±0.3		
L2 Calo	95±0.4		
EF Calo	94±0.4		

- Efficiency loss mainly due to the calorimeter isolation at L1 which is not applied in the offline photon selection
- 2g17i should be usable upt to luminosities of $10^{33} \text{cm}^{-2} \text{s}^{-1}$

MC event generation

Signal

- Events generated using PYTHIA: LO matrix element calculation for all processes
- MC@NLO also used to simulate gluon fusion process
- HERWIG also used to model VBF process
- ⇒ Full detector simulation used

All generated samples used for signal are normalized to the NLO cross-sections taking into account only QCD corrections

Background

Process	σ calculator	Cuts	σ (pb)	Full simulation # of events	Fast simulation # of events
$q\bar{q},qg \rightarrow \gamma\gamma x$	ReBos/ DIPHOX	$80 < m_{\gamma\gamma} < 150 { m GeV}$ $p_{T\gamma} > 25 { m GeV}, \eta < 2.5$	20.9	PYTHIA/ALPGEN 200000/1300000	ALPGEN 1670000
$gg \rightarrow \gamma \gamma$	ReBos	$p_{T\gamma} > 25 \text{GeV}, \eta < 2.5$	8.0	PYTHIA 200000	PYTHIA 850000
γj	JETPHOX	$p_{T\gamma} > 25 \text{GeV}$	180 · 10 ³	PYTHIA 3000000	ALPGEN 36700000
ij	NLOJET++	$p_{T_{\gamma}} > 25 \text{GeV}$	477 · 10 ⁶	PYTHIA 10000000	ALPGEN 37000000

Discriminating variables for H+1, 2 jets analysis

• $m_{\gamma\gamma i} > 350 \text{GeV}$

- $\Delta \eta_{ii} > 3.6$
- $m_{jj} > 500 \text{GeV}$

Fit – Fitter used

Hfitter Performs unbinned extended maximum likelihood fits, arbitrary number of samples, categories and fit variables (based on RooFit)

Likelihood :
$$\boxed{L = \prod_{c=1}^{n_{\mathrm{cat}}} e^{-\overline{N}^c} \prod_{i=1}^{N^c} P_i^c}$$

with
$$P_i^{\mathcal{C}} = N_H f_H^{\mathcal{C}} P_{H,i}^{\mathcal{C}} + \sum_{j=1}^{H_{\mathrm{bkg}}} N_{B_j}^{\mathcal{C}} P_{B_j,i}^{\mathcal{C}}$$
 and $P_{U_j,i}^{\mathcal{C}} = \prod_{k=1}^{h_{\mathrm{var}}} p_U^{\mathcal{C}}(x_{k,i})$ where $U = H, B_j$
$$\begin{cases} N_H : \text{total number of } H \to \gamma \gamma \text{ events in sample sample} \\ c : \text{category with distinct properties } (\eta, p_T \text{ region, production mechanism...}) \\ f_H^{\mathcal{C}} : \text{fraction of signal events in category } c \\ N_{B_j}^{\mathcal{C}} : \text{number of background event of type } j \text{ in category } c \\ N_{\mathrm{bkg}} : \text{number of background types } \gamma/\text{jet}, 2\gamma+\text{jet, di-jet, ...} \\ P_U^{\mathcal{C}}(x_{k,j}) : \text{probability density for event } i \text{ in category } c \text{ of type } U \\ \text{for dscriminant variable } x_k \end{cases}$$

Calorimeter granularity

	_				
	$ \eta $ range	Cell η size		Cell o	∮ size
		Layer 1	Layer 2	Layer 1	Layer 2
Barrel	0-1.4	0.025/8	0.025	0.1	0.025
	1.4-1.475	0.025	0.075	0.1	0.025
EndCap	1.375-1.425	0.05	0.05	0.1	0.025
	1.425-1.5	0.025	0.025	0.1	0.025
	1.5-1.8	0.025/8	0.025	0.1	0.025
	1.8-2.0	0.025/6	0.025	0.1	0.025
	2.0-2.4	0.025/4	0.025	0.1	0.025
	2.4-2.5	0.025	0.025	0.1	0.025

Granularity of layer 3 : $\Delta \eta \times \Delta \phi = 0.050 \times 0.025$

Inner detector

$H+E_T^{miss}$ and H+1 lepton from associated production

$$H+E_T^{miss}+1$$
 lepton

- ullet Signal : Mainly from $W\!H o \ell
 u \gamma \gamma$ and $t \overline{t} H$
- Background : Mainly from $t\bar{t}\gamma\gamma$, $W\gamma\gamma$ where W decays to $\ell\nu$ and $W\gamma\to e\nu\gamma$ where the other photon is radiated by the electron or is a jet faking photon

$$H+E_{\tau}^{miss}$$

- Signal : Mainly from $ZH \rightarrow \nu\nu\gamma\gamma$
- Background : Mainly from $t\bar{t}\gamma\gamma$, $Z\gamma\gamma$ and $W\gamma\to e\nu\gamma$ where the other photon is radiated by the electron or is a jet faking photon