96th meeting of the LHCC, 19 November 2008

RD50 STATUS REPORT 2008

Development of radiation hard sensors for very high luminosity colliders

Mara Bruzzi¹ and Michael Moll²

¹INFN Florence, Italy ²CERN- PH-DT - Geneva - Switzerland

on behalf of RD50

OUTLINE

- The RD50 collaboration
- Results obtained in 2008
- Work plan for 2009
- Resources request for 2009

http://www.cern.ch/rd50

Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

250 Members from 48 Institutes

41 European and Asian institutes

Belarus (Minsk), Belgium (Louvain), Czech Republic (Prague (3x)), Finland (Helsinki), Germany (Dortmund, Erfurt, Freiburg, Hamburg, Karlsruhe, Munich), Italy (Bari, Bologna, Florence, Padova, Perugia, Pisa, Torino, Trento), Lithuania (Vilnius), Netherlands (NIKHEF), Norway (Oslo (2x)), Poland (Warsaw(2x)), Romania (Bucharest (2x)), Russia (Moscow, St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Glasgow, Lancaster, Liverpool)

RD50

8 North-American institutes

Canada (Montreal), USA (BNL, Fermilab, New Mexico, Purdue, Rochester, Santa Cruz, Syracuse)

> 1 Middle East institute Israel (Tel Aviv)

Detailed member list: http://cern.ch/rd50

RD50 Signal degradation for LHC Silicon Sensors

RD50 Signal degradation for LHC Silicon Sensors

RD50 approaches to develop radiation harder tracking detectors

- <u>Material Engineering -- Defect Engineering of Silicon</u>
 - Understanding radiation damage ┥
 - Macroscopic effects and Microscopic defects
 - Simulation of defect properties & kinetics
 - Irradiation with different particles & energies
 - Oxygen rich Silicon

RD50

- DOFZ, Cz, MCZ, EPI
- Oxygen dimer & hydrogen enriched Silicon
- Influence of processing technology
- Material Engineering-New Materials (work concluded)
 - Silicon Carbide (SiC), Gallium Nitride (GaN)
- <u>Device Engineering (New Detector Designs)</u>
 - p-type silicon detectors (n-in-p)
 - thin detectors
 - 3D detectors
 - Simulation of highly irradiated detectors
 - Semi 3D detectors and Stripixels
 - Cost effective detectors
- Development of test equipment and measurement recommendations

Radiation Damage to Sensors:

- Bulk damage due to NIEL
 - Change of <u>effective doping concentration</u>
 - Increase of <u>leakage current</u>
 - Increase of <u>charge carrier trapping</u>

Surface damage due to IEL

(accumulation of positive charge in oxide & interface charges)

Related Works – Not conducted by RD50

- •"Cryogenic Tracking Detectors" (CERN RD39)
- "Diamond detectors" (CERN RD42)
- Monolithic silicon detectors
- Detector electronics

RD50 Reminder: Silicon Materials under Investigation

standard for	Material	Thickness	Symbol	ρ (Ocm)	$[O_i]$
particle	Standard F7 (n and n type)	50 100 150	F 7		
detectors	Standard FZ (II- and p-type)	300	1 2	1-30/10	< 3/10
	Diffusion oxygenated FZ (n- and p-type)	300	DOFZ	1-7×10 ³	~ 1–2×10 ¹⁷
used for LHC	Magnetic Czochralski Si, Okmetic, Finland (n- and p-type)	100, 300	MCz	~ 1×10 ³	~ 5×10 ¹⁷
Pixel	Czochralski Si, Sumitomo, Japan	300	Cz	~ 1×10 ³	~ 8-9 ×10 ¹⁷
detectors	(n-type)				
	Epitaxial layers on Cz-substrates, ITME,	25, 50, 75,	EPI	50 - 100	< 1×10 ¹⁷
"new"	Poland (n- and p-type)	100,150			
silicon material	Diffusion oxyg. Epitaxial layers on CZ	75	EPI-DO	50 - 100	~ 7×10 ¹⁷

- DOFZ silicon
- Enriched with oxygen on wafer level, inhomogeneous distribution of oxygen
- CZ/MCZ silicon

• Epi-Do silicon

- high Oi (oxygen) and O_{2i} (oxygen dimer) concentration (homogeneous) - formation of shallow Thermal Donors possible
- Epi silicon
- high O_i, O_{2i} content due to out-diffusion from the CZ substrate (inhomogeneous) - thin layers: high doping possible (low starting resistivity)
- as EPI, however additional O_i diffused reaching homogeneous O_i content

RD50 Defect Characterization - WODEAN

- WODEAN project (initiated in 2006, 10 RD50 institutes, guided by G.Lindstroem, Hamburg)
 - Aim: Identify defects responsible for Trapping, Leakage Current, Change of N_{eff}
 - Method: Defect Analysis on identical samples performed with the various tools available inside the RD50 network:

TSC signal (pA)

- C-DLTS (Capacitance Deep Level Transient Spectroscopy)
- **I-DLTS** (Current Deep Level Transient Spectroscopy)
- **TSC** (Thermally Stimulated Currents)
- **PITS** (Photo Induced Transient Spectroscopy)
- FTIR (Fourier Transform Infrared Spectroscopy)
- **RL** (Recombination Lifetime Measurements)
- PC (Photo Conductivity Measurements)
- **EPR** (Electron Paramagnetic Resonance)
- •TCT (Transient Charge Technique)
- CV/IV
- ~ 240 samples irradiated with protons and neutrons
- first results presented on 2007 RD50 Workshops, further analyses in 2008 and publication of most important results in in Applied Physics Letters

... significant impact of RD50 results on silicon solid state physics – defect identification

Example: TSC measurement on defects (acceptors) responsible for the reverse annealing

Summary – defects with strong impact on the device properties at operating temperature

RD50

I.Pintilie, NSS, 21 October 2008, Dresden

Summary – defects with strong impact on the device properties at operating temperature

RD50

I.Pintilie, NSS, 21 October 2008, Dresden

RD50 RD50 Test Sensor Production Runs (2005-2008)

- Recent production of Silicon Strip, Pixel and Pad detectors (<u>non exclusive list</u>):
 - **CIS Erfurt, Germany**
 - 2005/2006/2007 (RD50): Several runs with various epi 4" wafers only pad detectors
 - CNM Barcelona, Spain
 - 2006 (RD50): 22 wafers (4"), (20 pad, 26 strip, 12 pixel),(p- and n-type),(MCZ, EPI, FZ)
 - 2006 (RD50/RADMON): several wafers (4"), (100 pad), (p- and n-type),(MCZ, EPI, FZ)
 - HIP, Helsinki, Finland
 - 2006 (RD50/RADMON): several wafers (4"), only pad devices, (n-type),(MCZ, EPI, FZ)
 - 2006 (RD50) : pad devices, p-type MCz-Si wafers, 5 p-spray doses, Thermal Donor compensation
 - 2006 (RD50) : full size strip detectors with 768 channels, n-type MCz-Si wafers
 - IRST, Trento, Italy
 - 2004 (RD50/SMART): 20 wafers 4" (n-type), (MCZ, FZ, EPI), mini-strip, pad 200-500µm
 - 2004 (RD50/SMART): 23 wafers 4" (p-type), (MCZ, FZ), two p-spray doses 3E12 amd 5E12 cm⁻²
 - 2005 (RD50/SMART): 4" p-type EPI
 - 2008 (RD50/SMART): new 4" run
 - Micron Semiconductor L.t.d (UK)
 - 2006 (RD50): 4", microstrip detectors on 140 and 300µm thick p-type FZ and DOFZ Si.
 - 2006/2007 (RD50): 93 wafers, <u>6 inch wafers</u>, (p- and n-type), (MCZ and FZ), (strip, pixel, pad)
 - Sintef, Oslo, Norway
 - 2005 (RD50/US CMS Pixel) n-type MCZ and FZ Si Wafers
 - Hamamatsu, Japan [ATLAS ID project not RD50]
 - In 2005 Hamamatsu started to work on p-type silicon in collaboration with ATLAS upgrade groups (surely influenced by RD50 results on this material)

Hundreds of samples (pad/strip/pixel) recently produced on various materials (n- and p-type).

- M.Lozano, 8th RD50 Workshop, Prague, June 2006
- A.Pozza, 2nd Trento Meeting, February 2006
- G.Casse, 2nd Trento Meeting, February 2006
 D. Portelette, 6th PD50 Workshop, Haleinki, June 200
- D. Bortoletto, 6th RD50 Workshop, Helsinki, June 2005
- N.Zorzi, Trento Workshop, February 2005
 H. Sadrozinski, rd50 Workshop, Nov. 2007

RD50 n-in-p microstrip detectors

- n-in-p microstrip p-type FZ detectors (Micron, 280 or 300μm thick, 80μm pitch, 18μm implant)
- Detectors read-out with 40MHz (SCT 128A)

Mara Bruzzi and Michael Moll on behalf of the RD50 CERN Collaboration – LHCC, November 19, 2008 -11-

RD50 Silicon materials for Tracking Sensors

Note: Measured partly under different conditions! Lines to guide the eye (no modeling)!

RD50 Silicon materials for Tracking Sensors

Note: Measured partly under different conditions! Lines to guide the eye (no modeling)!

"Mixed Irradiations"

• LHC Experiments radiation field is a mix of different particles

(in particular: charged hadrons \Leftrightarrow neutrons)

- MCZ silicon has shown an interesting behavior:
 - build up of net negative space charge after neutron irradiation
 - build up of net positive space charge after proton irradiation

• Question:

RD50

• What happens when (MCZ) detectors are exposed to a 'mixed' radiation field?

RD50 Mixed irradiations: 23 GeV protons+neutrons

•MCz-p at larger fluences the increase of V_{fd} is not proportional to the added fluence –as if material becomes more "n-like" with fluence – same as observed in annealing plots

RD50 Mixed Irradiations (Neutrons+Protons)

Needs further study with both nMCz and pMCz substrates and differing mixed doses

[T.Affolder 13th RD50 Workshop, Nov.2008]

Mara Bruzzi and Michael Moll on behalf of the RD50 CERN Collaboration – LHCC, November 19, 2008 -16-

RD50 Development of 3D detectors

- "3D" electrodes: narrow columns along detector thickness,
 - diameter: 10µm, distance: 50 100µm
- Lateral depletion: lower depletion voltage needed
 - thicker detectors possible
 - fast signal
 - radiation hard

From STC to DTC

DDTC: "double-sided double type columns"

- Columnar electrodes of both doping types are etched into the detector from both wafer sides
- Columns are not etched through the entire detector
 - Charge collection expected to be similar to "full 3D" detectors, but the fabrication process is much simpler

RD50 Processing of Double-Column 3D detectors

1. CNM Barcelona (2 wafers fabricated in Nov. 2007)

- Double side processing with holes not all the way through
- n-type bulk
- bump bond 1 wafer to Medipix2 chips
- Further production (n and p-type)

DDTC on p-type, wafer layout

 First tests on irradiated devices performed (CNM devices, strip sensors, ⁹⁰Sr, Beetle chip, 5x10¹⁵n_{eq}/cm² with reactor neutrons) : 12800 electrons

2. FBK (IRST-Trento)

- very similar design to CNM
- 2 batches produced (n-type and p-type)

Mara Bruzzi and Michael Moll on behalf of the RD50 CERN Collaboration – LHCC, November 19, 2008 -18-

RD50 2008 test beam with 3D sensors

- Two microstrip 3D DDTC detectors tested in testbeam (CMS/RD50)
 - One produced by CNM (Barcelona), studied by Glasgow
 - One produced by FBK-IRST (Trento), studied by Freiburg
 - Readout: APV25, as used in CMS tracker
 - Analogue readout (40 MHz), 50 ns shaping time
 - Trigger accepted during the entire 25 ns clock window (no TDC), but sampling of the signal always at the same time
 - \rightarrow Average detected signal expected to be \approx 10% lower

RD50 3DDTC sensors (test beam – first data)

Landau distribution

- ADC distribution with fit of a convoluted Landau and Gaussian
- Bias voltage: 40 V, SNR ≥ 10
- Result:

Landau MP= (33.32±0.02) ADC counts

- Calibration ADC counts → charge so far not available
- Histogram contains data from all bonded strips (not position resolved)

[M.Koehler 13th RD50 Workshop, Nov.2008]

RD50 Test equipment: ALIBAVA

- ALIBAVA A LIverpool BArcelona VAlencia collaboration
- System supported by RD50: Will enable more RD50 groups to investigate strip sensors with 'LHC-like' electronics
- System: Software part (PC) and hardware part connected by USB.
- Hardware part: a dual board based system connected by flat cable.
 - Mother board intended:
 - To process the analogue data that comes from the readout chips.
 - To process the trigger input signal in case of radioactive source setup or to generate a trigger signal if a laser setup is used.
 - To control the hardware part.
 - To communicate with a PC via USB.
 - Daughter board :
 - It is a small board.
 - It contains two Beetle readout chips
 - It has fan-ins and detector support to interface the sensors.
- Software part:
 - It controls the whole system (configuration, calibration and acquisition).
 - It generates an output file for further data processing.

ACQUISITION SOFTWAR MOTHERBOARD AC PULIG USB CABLE DESKTOP AC/DC VOLTAGE SOURCE DETECTOR AND DAUGHTERBOARD FLAT CABLE CONNECTOR FOR RADIACTIVE SOURCE DETECTOR BIAS

[R.Marco-Hernández, 13th RD50 Workshop, Nov.2008]

RD50 RD50 achievements & links to LHC Experiments

Some important contributions of RD50 towards the SLHC detectors:

- p-type silicon (brought forward by RD50 community) is now considered to be the base line option for the ATLAS Tracker upgrade
- RD50 results on reverse annealing of p-type silicon (no cooling during maintenance periods needed) are already taken into account by Experiments
- n- and p- type MCZ (introduced by RD50 community) are under investigation in ATLAS, CMS and LHCb
- RD50 results on very highly irradiated silicon strip sensors have shown that planar pixel sensors are a promising option also for the upgrade of the Experiments

Close links to and knowledge exchange with Experiments

- Many RD50 groups are directly involved in ATLAS, CMS and LHCb upgrade activities (<u>natural close contact</u>).
- Many common activities: Irradiation campaigns, test beams, wafer procurement, sensor production, ...
- LHC speed front-end electronics (ATLAS, CMS and LHCb) used by RD50 members

RD50

Workplan for 2009 (1/2)

Defect and Materia Characterization	 Characterization of irradiated silicon: Continue WODEAN program Common publication in Phys. Rev. B on new results Modelling and understanding role of clusters Extend studies to p-type silicon detectors Extend search on defects responsible for trapping
Defect Engineering	 Secure supply of 150µm thick epitaxial silicon Production of epitaxial silicon on FZ substrate
& Pad Detector Characterization	 Extend common irrad. programs with fluences up to 10¹⁶cm⁻² (get clear understanding on trapping and avalanche processes) Extend investigations on 'mixed' irradiations Cold irradiations (down to -40°C) Irradiations with and without applied bias Develop techniques to measure the electric field strength inside the detectors

New Structures	 Working, high quality double column 3D devices (pad, strip, pixel) are now available within RD50: Perform irradiation & test program for 3D sensors as previously performed for strip sensors!
	• Further explore fluence range between 10 ¹⁵ and 10 ¹⁶ cm ⁻²
	• • • • • • • • • • • • • • • • • • •
Full Detector Systems	• Long term annealing of segmented sensors Consolidate finding that no reverse annealing is visible in CCE, which will have major impact on detector maintenance and performance
	• Extend activity on pixel sensor fabrication & characterization (intensify collab. with ATLAS/CMS pixel)
	 Support and distribute Alibava system among RD50 members
	 Investigation on electric field profile in irradiated segmented sensors and impact on CCE

RD50 Resources requested for 2009

• Common Fund:

RD50 does not request a direct financial contribution to the RD50 common fund.

• <u>Acknowledgement</u>: Council Whitepaper – Theme 3 R&D – PH Workpackages

The CERN-RD50 group activities are included in and supported by the Work Package 4 "*Radiation Hard Semiconductor Detectors*"

• Lab space and technical support at CERN:

As a member of the collaboration, the PH-DT should provide (as in 2008) access to **lab space in building 14** (characterization of irradiated detectors), **in building 28** (lab space for general work) and in the **Silicon Facility** (hall 186, clean space).

• CERN Infrastructure:

- One collaboration workshop in November 2008 and working group meetings
- Administrative support at CERN through PH-DT secretariat

Spares

RD50

- Common to all materials (after hadron irradiation):
 - reverse current increase
 - increase of trapping (electrons and holes) within ~ 20%