BGV status and plans

P. Hopchev (EPFL)

B. Dehning, P. Magagnin, Q. Veyrat (BE-BI) C. Barschel, M. Ferro-Luzzi, M. Rihl (PH-LHCb)

BI Technical Board

19 Nov 2015

1 Introduction

2 BGV Demonstrator

1 Introduction

2 BGV Demonstrator

Beam Gas Vertex monitor (BGV)

- Development of a transverse profile monitor for HL-LHC
- Based on the beam-gas imaging technique pioneered in LHCb JINST 7 (2012) P01010, JINST 9 (2014) P12005
- \bullet Measurement principle: Tracks \to beam-gas interaction vertices \to transverse beam profile (2D)
- Can provide also (at low rate): beam position and angle, relative bunch populations, ghost charge, abort gap population, longitudinal profile (needs timing detector with ~50 ps resolution)

Development goals and approach

- Phase 1: demonstrate the potential by installing a prototype system on one beam at the LHC (BGV Demonstrator)
 - Make a sequence of measurements, full beam and b-by-b, also during ramp
 - Modest requirements on the measurement frequency, precision and accuracy
- Phase 2: build a full-blown BGV for each LHC ring
 - Bunch width resolution: < 5 % in $\Delta t <$ 1 min
 - Absolute beam width accuracy: 2 %

- Collaboration required: BE-BI, TE-VSC, PH-LHCb, EPFL, Aachen
 - BGV Demonstrator Collaboration Agreement

Demonstrator conceptual design

- Detector external to the chamber; No movable parts
- Expectations for the Demonstrator (see next slides):
 - Bunch width resolution: 5 % in $\Delta t = 5$ min
 - Absolute width accuracy: 10 %
- Beam size, aperture, target gas ⇒ BGV size
- Critical design parameters: minimal approach to the beam, polar angle acceptance, and material budget (window $x/X_0 \approx 1$ %) [Ref.]

Beam width measurement and error 1/3

- Accumulate vertices over certain time Δt
- Determine beam angle in the x z and y z planes
- Fit a Gaussian to the transverse distributions
- The statistical precision on $\sigma_{\rm beam}$ is determined by the $N_{\rm vertices}$ used in the fit (scales as $1/\sqrt{2N}$)
 - $\bullet \ \ \text{Want high rate of interactions} \Rightarrow \text{inject gas}$
 - \bullet Demonstrator designed to get \sim 1 Hz of "good" vertices per nominal bunch (see details in the backup slides)
 - ⇒ For Δt = 5 min, we get stat. precision \approx 4 %
- ullet The main systematic error on $\sigma_{
 m beam}$ comes from the vertex resolution
 - Want precise detector, minimum material, and high track multiplicity (see details in the backup slides)
 - Selecting high multiplicity events reduces the rate of "good" vertices

Beam width measurement and error 2/3

For a beam with Gaussian transverse shape:

$$\sigma_{\text{raw}}^2 = \sigma_{\text{beam}}^2 + \sigma_{\text{vtx.res}}^2$$

• When $\delta \sigma_{\rm raw}/\sigma_{\rm raw} \to 0$:

$$\frac{\delta \sigma_{\text{beam}}}{\sigma_{\text{beam}}} = \frac{\sigma_{\text{vtx.res}}^2}{\sigma_{\text{beam}}^2} \cdot \frac{\delta \sigma_{\text{vtx.res}}}{\sigma_{\text{vtx.res}}}$$

- The vertex resolution $\sigma_{\text{vtx.res}}$ depends on z_{vtx} and N_{tracks}
- It can be determined from data alone (track splitting method)
- The determination of the uncertainty of the vertex resolution $\frac{\delta \sigma_{\text{vtx.res}}}{\sigma_{\text{vtx.res}}}$ requires simulation (compare results of track splitting and MC-truth methods)
- For the BGV Demonstrator aim for $\frac{\delta \sigma_{\text{vtx.res}}}{\sigma_{\text{vtx.res}}}$ = 10 % (LHCb has achieved 5 %)
- σ_{beam} depends on E_{beam} and ϵ_{n}
 - Better accuracy for larger beam (at injection and with large emittance)

Beam width measurement and error 3/3

- Plot of the systematic error from vertex resolution
 - Made during the early design studies (later, the minimal aperture was fixed to 26 mm)
 - The plot is for $E_{\text{beam}} = 6.5 \text{ TeV}$
- These results are obtained with a simplified simulation application
 - Thanks to Maria Kuhn for her contributions to these studies
 - More details can be found in BGV #20, BGV #22 and Emitt. meeting Nov 2013
- ullet Strong cuts were applied on N_{tracks} (select 1 out of 1000 events)

For ϵ_n = 2 μ m expect:

- $ullet rac{\delta \sigma_{
 m beam}}{\sigma_{
 m beam}} < 5 \ \% \ (0.45 \ {
 m TeV})$
- $\frac{\delta \sigma_{\text{beam}}}{\sigma_{\text{beam}}}$ = 10 % (6.5 TeV)

1 Introduction

2 BGV Demonstrator

Overview

- Vacuum system: Designed and produced by CERN (+outsourcing)
- Detector: Scintillating fibres read out with SiPMs
 - Developed by EPFL and RWTH Aachen
 - Same technology as for the LHCb upgrade

Vacuum system 1/3

Vacuum system 2/3

Engineering design

N. Chritin (EN-MME) and
 P. Magagnin (BE-BI)

Production

- Managed by the main workshop
- Window chamber most complex and delicate
 - Al block forging (Imbach, CH), machining and EB welding (CERN)

Treatment and Qualification

- Cleaning, copper plating and NEG coating (TE-VSC)
- RF test (BE-ABP), bakeout and vacuum qualification (TE-VSC)
- Metrology (EN-MME)

Vacuum system 3/3

- BGV chambers installed in July 2014 (EN-HE)
- Alignment (Survey) and bakeout (TE-VSC) done

Additional systems:

- Chamber temperature monitoring (help from TE-ABT)
- Forced-air chamber cooling (against RF heating)
 - This year we observed T increase up to 2 °C (fill with 2200 bunches)

Detector 1/2

- Double sided detector modules 2° "stereo" angle
- Fibre mattresses produced at Aachen, mechanics and electronics at EPFL
- Scintillating fibre mattress
 - \bullet 260 \times 340 mm
 - Optimized geometry (corner cut)
 - Fibre diameter 250 μ m (Kuraray)
 - 4 and 5 layer mats
- Expected hit resolution: \sim 70 μ m

SiPMs

- 128-channel arrays (Hamamatsu)
- Channel size = $0.25 \times 1.2 \text{ mm}$
- Noise increases with radiation
 ⇒ cooling to reduce SiPM noise

Detector 2/2

- Two modules fixed together on a common plate: "2-module assembly"
- In total:
 - 8 detector modules arranged in 2 "planes"
 - $8 \times 2048 = 16384$ channels

Trigger scintillators (Level–0 trigger) 1/2

Provide information which bunchcrossings should be read out (DAQ limited to 1 MHz)

- 4 scintillators
- 2 upstream of the gas tank: veto upstream events
- 2 downstream of the detector: require certain signal to readout the event

Events with losses from the other beam do not trigger

Trigger scintillators (Level-0 trigger) 2/2

- Can provide standalone measurement of the relative bunch populations and ghost charge
- Data shown for fill 4479 (Oct 2015)

May 2013

TS3 2015

TS3 2015

TS3 2015

Detector cooling 1/2

- ullet Developed system to cool the SiPMs down to $-40~^{\circ}\text{C}$
 - Will start without cooling, later decrease T gradually
- Standalone chiller in the service tunnel
 - Used C₆F₁₄, considering also Novec 649
- Transfer line and a distribution manifold in the LHC tunnel
 - Silicon tubes and Armaflex insulation

Detector cooling 2/2

- Problem encountered: slow diffusion of the cooling liquid through the Silicon tubes
 - Considering possible solutions

Dry air

Using compressed air as dry air Dew point = -40 °C, p < 0.1 bar Thanks to EN-CV

Readout & Control

- BGV readout based on LHCb VELO
 - 25 ns, 1 MHz maximum rate
 - Readout trigger provided by scintillators
- Control based on PVSS/WinCC-OA (copy LHCb)
 - Interface to LHC CMW to exchange data and commands (in preparation)

Readout specifics

- $\bullet \ \ SiPM \Rightarrow Beetle \ chip \Rightarrow Repeater \Rightarrow 60 \ m \Rightarrow TELL1 \ board$
- Beetle chip
 - Radiation tolerant analog readout chip developed for LHCb
 - Integrates 128 channels with low-noise charge-sensitive pre-amplifiers and shapers
 - Accepts trigger rates up to 1.1 MHz
 - The output is multiplexed onto 4 ports at 40 MHz (32 channels/port)
- TELL1 board
 - Readout board used in LHCb for optical or analogue data from the front-end electronics
 - 8-bit ADC sampling at 40 MHz
 - FPGA-based pre-processing (common mode correction and zero suppression)

- DAQ installed in TS2 2015
- All systems functional

- A single chassis (HP ProLiant "Blade") hosts the control server and CPU boards
 - Thanks to BE-CO

- Racks layout
- Rack photos

Readout commissioning 1/2

ADC DELAY SCAN

- Special data-taking configuration used to optimize the sampling time of the TELL1 boards with respect to the output produced by the Beetle chips
- Scan the 16 possible fine delay settings on the TELL1 boards
- Uses test pulses produced by the Beetle (no beam)
- Data taken with bad and good ADC delay setting (Beetle headers visible)

PULSE SHAPE SCAN

- Special data-taking configuration used to adjust the common TELL1/beetle phase with respect to the LHC clock
- 25 steps of 1 ns reproduce the pulse shape pattern (beam needed)
- To be performed soon

Readout commissioning 2/2

- L0 trigger latency
 - Optimal setting found (25-ns granularity)
 - Beetle pulse shape visible: starts negative, tail is positive, extends over a few 25-ns slots

"Physics" software

Based on the LHCb software framework

GAUDI: a set of SW components for developing event simulation, reconstruction, visualisation, etc. applications. SW development facilities and interfaces to 3rd party SW (e.g. PYTHIA and GEANT4). Used by several HEP experiments.

Simulation

- Generate beam-gas interactions
- Geometry description and detector response
- Develop event reconstruction algorithms
- Study vertex resolution systematic
- Event reconstruction
 - Pattern recognition and track fitting
 - Vertex reconstruction
- Initial versions of the algorithms are ready

Status and next steps

- The BGV Demonstrator installation was completed in TS3 2015
 - Light-protection cover ("tent") coming in YETS
- The detector and readout are in good shape
 - One electronics card to be replaced and a few cables to be checked
- Commissioning of readout ongoing
 - √ L0 trigger latency
 - √ ADC delay scan (beetle TELL1)
 Pulse shape scan (fine tuning of readout timing)
- Priority for this year: record raw data with good timing settings
- In parallel, work on the next steps
 - Treatment of raw signals, corrections, zero-suppressed readout
 - Track and vertex reconstruction
 - Develop online profile measurement application
 - Publishing and logging of event data and measurements

Milestones

- BGV TWiki: https://twiki.cern.ch/twiki/bin/view/BGV/
- BGV ECRs: https://edms.cern.ch/project/LHCMS183
 - Space reservation, BGV Demonstrator, Cooling, and Tent
- BGV presentations:

https://twiki.cern.ch/twiki/bin/view/BGV/Presentations

Additional Slides

Possible beam measurements

- Beam position and angle
- Transverse beam profile
 - Main interest for BI
 - Full beam and b-by-b, absolute scale, cover full LHC cycle
- Longitudinal profile
 - ullet Need timing information (\sim 50 ps resolution)
- Relative bunch charges
 - Compare rates between bunch slots
- Ghost charge, abort gap population
 - Normalize rate to filled bunch slots

Design layout

Rate of inelastic interactions

 $Z=Z_{2}$

$$R_{\text{inel}} = \int_{z=z_1} \rho(z) \, dz \cdot \sigma_{\text{pA}}(E) \cdot N \cdot f_{\text{rev}}$$

- $\rho(z)$ gas density
- Inelastic proton-nucleus cross-section $\sigma_{\rm pA}(E) \approx \sigma_{\rm pp}(E) \cdot {\rm A}^{2/3}$ A atomic mass In the case of $^{20}{\rm Ne}$:
 - $\sigma_{pNe}(450 \text{ GeV}) = 243 \text{ mb}$
 - $\sigma_{pNe}(7 \text{ TeV}) = 295 \text{ mb}$
- *N* number of protons per bunch
- f_{rev} bunch revolution frequency, 11.245 kHz

At the LHC, pressure of a few $\times 10^{-8}$ mbar over 1 m is needed to get $R_{\text{inel}} = 50 \text{ Hz}$

Charged particle multiplicity

- Average number of charged particles
- "Charged particles" = long-lived charged particles produced in a beam gas interaction
 - The more we detect, the better precision we get on the position of the interaction
- Comparison of simulations with measurements of previous experiments
- Distribution of the number of charged particles

Angular acceptance

- Determine the position and the size of the sensors, needed to cover certain
 - Range of angles $[\theta_{\min}, \theta_{\max}]$
 - Target length L_{gas}

Aim at minimal r₁

Values used in the design study:

- ► L_{gas} = 1000 mm
- $\bullet \text{ } \theta_{\text{min}} = 14 \text{ mrad } (\eta_{\text{max}} = 5)$
- $\bullet \ \theta_{\text{max}} = 100 \ \text{mrad} \ (\eta_{\text{min}} = 3)$

Simulated p — Ne collisions

Tracking precision

The magnitude of the impact parameter (IP), σ_{IP} , is determined by:

- $\sigma_{\rm MS}$ IP induced by multiple scattering (MS)
 - Minimizing the amount of material (x/X_0) is essential
- σ_{extrap} IP induced by detector hit resolution and extrapolation distance
 - Use high-resolution detectors and minimize the longitudinal distance (related to the aperture)

$$\sigma_{\mathsf{IP}}^2 = \sigma_{\mathsf{MS}}^2 + \sigma_{\mathsf{extrap}}^2$$

$$\sigma_{\rm MS} pprox r_1 \, rac{13.6 \, {
m MeV}}{
ho_T} \, \sqrt{rac{x}{X_0}}$$

$$\sigma_{
m extrap} pprox \sqrt{rac{Z_1^2 + Z_2^2}{(Z_2 - Z_1)^2}} \cdot \sigma_{
m hit}$$

Vertexing precision – basic considerations

For a beam with Gaussian transverse shape:

$$\sigma_{\text{raw}}^2 = \sigma_{\text{beam}}^2 + \sigma_{\text{vtx.res}}^2$$

• When $\delta \sigma_{\rm raw}/\sigma_{\rm raw} \to 0$:

$$\frac{\delta \sigma_{\text{beam}}}{\sigma_{\text{beam}}} = \frac{\sigma_{\text{vtx.res}}^2}{\sigma_{\text{beam}}^2} \cdot \frac{\delta \sigma_{\text{vtx.res}}}{\sigma_{\text{vtx.res}}}$$

Therefore, it is important to have

- Small δσ_{vtx.res} / σ_{vtx.res}: aim at 10 % (resolution parametrization)
- Small ratio $\sigma_{\text{vtx.res}}^2$ / σ_{beam}^2 : preferably < 1
- The vertex resolution depends on:
 - N_{tracks} (vertex reconstruction)
 - z_{vtx} (extrapolation distance)

Optics and beam size

- Beam size at the BGV location (DCUM 9775 m)
- Using $\epsilon_{\rm n}$ = 2 $\mu{\rm m}$

$\sigma_{\sf beam}\left[\mu{\sf m} ight. ight]$

	β [m]	0.45 TeV	6.5 TeV
X	210	936	246
У	170	842	222

Cabling

- BGV located at DCUM \approx 9775 m (C7L4)
- Readout electronics will be placed in racks BY12 BY14
- Cabling campaign in May 2014
 - About 100 cables for detector readout, control, LV, HV, trigger
 - About 30 cables for vacuum pumps, gas injection, gauges (racks VY05,12,20)

Trigger scintillators

 Provide information which bunch-crossing should be read out (DAQ limited to 1 MHz)

Size of scintillating plates choosen to be 300mm and the cut-out is the same as the trackers 98mm.

Temperature and humidity monitoring

- $\bullet\,$ In 2015 the maximum T increase of the BGV chamber was 2 $^{\circ}\text{C}$
 - Seems like effect from the bunch length at the end of the fills
- The dew point is very low (dry air exhaust in the LHC tunnel by EN-CV)
- More details: https://twiki.cern.ch/twiki/bin/view/BGV/THMS

Radiation monitoring

- Effort is made to monitor the radiation dose on the SiPMs
- RADMON 4LM19S placed behind the far detector station
- Installed several pin diodes with known behavior under radiation
- More details: https://twiki.cern.ch/twiki/bin/view/BGV/Radiation