
Estimating the cost of locks in ROOT
with VTune

E. Tejedor, D. Piparo, P. Canal, P. Mató
Concurrency Forum
October 21st 2015

Outline

1. Locks in ROOT
– TTree I/O parallelization

2. Estimation of lock cost
– IgProf

– Extrae + Paraver

– VTune

3. Conclusions

2

Locks in ROOT

3

• When working in MT mode, ROOT protects the
access to global/shared resources

• Example: TTree I/O parallelization
– http://indico.cern.ch/event/395194/

– Branches share the tree, cache and file

TreeTree

Branch
1

Branch
1

Branch
N

Branch
N

…

GetEntry(i) GetEntry(i)

Task Task

Tree CacheTree Cache FileFile

http://indico.cern.ch/event/395194/

Motivation

4

• Performance analysis of TTree I/O parallelization for a
set of trees
– Custom tree with events of type $ROOTSRC/test/Event.h
– CMS: GenSim data
– ATLAS: xAOD data

• Intel machine, 4 cores (8 HT)
• Needed to find out if scaling issues were related to lock

contention
• How to reliably estimate the cost of locks?

IgProf

5

• Statistical sampling
• Low profiling overhead
• Issue with multi-threading

– Merge of thread stacks not correct
– Reported to Giulio Eulisse

Extrae + Paraver

6

• Extrae
– Instrumentation tool
– Can be used to emit user events
– Generates trace files

• Paraver
– Graphical performance analysis
– Displays trace files

ExtraeExtrae

User program {
 …
 Extrae_event(type, value);

 …
}

Trace
files
Trace
files

ParaverParaver

Paraver trace

7

• Count the elapsed time per event type

• Limitation: number of events

VTune: Concurrency Analysis

8

• Intel VTune Amplifier
– Profiler
– Concurrency analysis

VTune: Waits analysis

9

• Study of waits
– Use as input the report of the concurrency analysis
– Generate a waits analysis with amplxe-cl

 Index % Wait Time:Total Wait Time:Self Wait Time:Children Name Index

 [0] 100.0 0.0 63.986 <spontaneous> [0]

 0.0 55.229 __libc_start_main [1]

 0.0 7.003 clone [25]

 0.0 1.162 main [35]

 0.0 0.298 func@0x405f2c [73]

 0.0 0.293 main [77]

 0.0 0.001 _dl_start_user [118]

 0.0 0.0 func@0x402260 [195]

 0.0 55.229 <spontaneous> [0]

 [1] 86.31 0.0 55.229 __libc_start_main [1]

 0.0 55.023 ttree_iter_seq [2]

 0.0 0.206 main [90]

 0.0 0.0 toplev_main [189]

VTune: Lock cost

10

• Study of locks in parallel TTree I/O
– Custom tree
– VTune (2013) reports a set of locks to be time consuming
– Complete removal of most costly lock reduces execution

time with VTune

VTune: Lock cost (II)

11

• However:
– Execution time with VTune is significantly bigger (0.2 sec vs

5 sec)
– Lock removal has very little effect in the execution time

without VTune

• Same experience with ATLAS tree, VTune 2016 and
using the waits analysis:
– Execution with VTune: 65 sec -> 37 sec
– No noticeable changes without VTune: 25 sec

 Index % Wait Time:Total Wait Time:Self Wait Time:Children Name Index

 38.744 0.0 TClass::GetBaseClassOffset [14]

 [15] 60.55 38.744 0.0 TLockGuard [15]

Conclusions

12

• Still have not found an optimal tool to measure the
lock contention in ROOT

• IgProf and Paraver can help, but they have
limitations

• VTune results can be used as a hint, but sometimes
they do not estimate correctly the real cost of locks

• Suggestions are welcome!

	Slide 1
	Outline
	Locks in ROOT
	IgProf
	Tools: Paraver trace (II)
	Tools: VTune
	Next Steps

