
Threading
Performance
Measurements with
VTune

Christopher Jones FNAL

Measurements with VTune Concurrency Forum 2015/10/21

What is VTune?
VTune is an Intel performance measurement system

Can measure
Concurrency efficiency
Cross threads locks and waits
CPU hardware counters
GPU performance

Can do measurements from the GUI or command line tool
Data generated by command line tool can be read into the GUI for analysis

OpenLab has a cross CERN license
https://twiki.cern.ch/twiki/bin/view/Openlab/IntelTools#Intel_Parallel_Studio_XE_201_AN1

2

https://twiki.cern.ch/twiki/bin/view/Openlab/IntelTools#Intel_Parallel_Studio_XE_201_AN1

Measurements with VTune Concurrency Forum 2015/10/21

Using VTune with cmsRun
VTune did not work ‘out of the box’ on cmsRun

Steps needed to work
Had to use most recent VTune beta

older releases all had assertion failures
/afs/cern.ch/sw/IntelSoftware/linux/x86_64/xe2016/vtune_amplifier_xe_2016.1.0.424694

Tell VTune to ignore processes started by ROOT
-strategy=ld-linux.so.2:nt:nt,ld-linux-x86-64.so.2:nt:nt
VTune is unable to instrument these processes

Had to enable signal 38

Problem seen
GUI sometimes only shows measurements from some of the threads
Do not know if failure was during data collection or in viewing

3

Measurements with VTune Concurrency Forum 2015/10/21

Measurement
Replicated Tier 0 job

cmsRun configuration changes
Max events of 992
Number of threads 8

VTune configuration
concurrency measurement
skip first 5 minutes of job
sample every 100us
unlimited data collection size

4

Measurements with VTune Concurrency Forum 2015/10/21

VTune GUI

5

Measurements with VTune Concurrency Forum 2015/10/21

VTune GUI

6

<

Modes
Summary: high level view of results
Bottom-up: accumulated time in function for all stack traces
Caller/Callee: show time in call stack for selected function
Top-down: tree view of time spent in stack traces

Measurements with VTune Concurrency Forum 2015/10/21

VTune GUI

7

<

Function / Call Stack
Function with the time measurements
Triangle reveals call stacks leading to the function

Measurements with VTune Concurrency Forum 2015/10/21

VTune GUI

8

<

Time
CPU Time: CPU time spent in the function
Wait Time: Time waiting in function summed across threads
Can sort on any of the columns

Measurements with VTune Concurrency Forum 2015/10/21

VTune GUI

9

Thread View
Utilization of each thread over time
Can filter based on time
Can select waits and see function selected above

Measurements with VTune Concurrency Forum 2015/10/21

Initial Measurement

10

Measurements with VTune Concurrency Forum 2015/10/21

Initial Measurement

11

Poor Thread Utilization
Only short times of good CPU Time
Lots of waiting

Measurements with VTune Concurrency Forum 2015/10/21

Initial Measurement

12

Wait Time
Primary cause of waiting is from ROOT locks
Event output time due to ROOT locks

Measurements with VTune Concurrency Forum 2015/10/21

Initial Findings
Waiting on TFormula
A new TFormula made each time a jet correction was called

Waiting on ROOT calls from cut parser
Calling functions via the ROOT interface used always took a lock

Waiting on output
1/2 time waiting to talk to a particular instance of output module
1/2 minutes waiting on ROOT lock during TTree::Fill

Vast majority from TClass::GetCheckSum

Philippe Canal made changes to ROOT to reduce lock use
TFormula copying should avoid taking locks
Calling TTree::Fill will avoid most locks
Decreasing the cost of using ROOT to find base class offsets

13

Measurements with VTune Concurrency Forum 2015/10/21

Post ROOT Changes

14

Measurements with VTune Concurrency Forum 2015/10/21

Post ROOT Changes

15

Wait Time
TFormula and cling still a problem

Measurements with VTune Concurrency Forum 2015/10/21

Post ROOT Findings
Cut parser changes needed
Philippe Canal added API to TMethod to allow caching of function pointer from
cling

TFormula changes were insufficient
Problem mitigated in ROOT 6.04 with new TFormula implementation
Replaced with a hand made parser and executor

handles a subset of TFormula expressions
fully stateless parser and executor so extremely thread efficient
small memory footprint

16

Measurements with VTune Concurrency Forum 2015/10/21

First CMSSW Changes

17

Better Thread Utilization
Longer periods of CPU time

Measurements with VTune Concurrency Forum 2015/10/21

First CMSSW Changes

18

Wait Time
Primarily waiting to run an instance of output module

Measurements with VTune Concurrency Forum 2015/10/21

First CMSSW Changes

19

CPU Time
Lots of time in TBB internal

Measurements with VTune Concurrency Forum 2015/10/21

Findings
TBB time from calls to SerialTaskQueue
CMS class meant to protect a resource from simultaneous access

SerialTaskQueue inappropriately used in an ‘event’ data class
Class was doing a lazy evaluation of elements in its container
First request for each item put task into the SerialTaskQueue
Code wasn’t actually thread safe anyway

other pieces of code were accessing the container outside of the SerialTaskQueue

Change: remove the use of SerialTaskQueue
Removing the lazy evaluation had no impact on performance

the code had been prematurely optimized

20

Measurements with VTune Concurrency Forum 2015/10/21

Final Results

21

Measurements with VTune Concurrency Forum 2015/10/21

Final Results

22

Good Thread Utilization
High continuous thread utilization
Overall job time is much shorter

Measurements with VTune Concurrency Forum 2015/10/21

Final Results

23

Wait Time
Primarily waiting to run an instance of output module

Measurements with VTune Concurrency Forum 2015/10/21

Final Results

24

CPU Time
func@0X* are all compression calls

Measurements with VTune Concurrency Forum 2015/10/21

Next Step
Full CMSSW threading framework implementation
Switching to TBB task per module will work around output module

If event 1 is running the output module event 2 could run a different module

Work on output module to make more thread efficient
Decrease time in a single thread
Look into utilizing multiple threads when compressing buffers

25

Measurements with VTune Concurrency Forum 2015/10/21

VTune Calibration
The value VTune gives for ‘concurrency’ does not correspond to
timing measurements of program

VTune much more pessimistic
Increased VTune concurrency does correspond to real world speedups

26

Program
Changes

Speedup Regular Job
Time (s)

VTune
Concurrency

VTune Job
Time (s)

Initial 5.5 1826 2.1 16440

ROOT 5.7 1748 2.6 9884

CMSSW 1 6.1 1641 7.2 3363

Final 6.2 1605 5.0* 2429

* fraction of the job was in the end of job single threaded part. GUI histogram of thread
utilizations showed most time spent at 7 cores active with second most at 1.

Measurements with VTune Concurrency Forum 2015/10/21

Conclusion
VTune is a useful tool
It is capable of running on HEP frameworks
It does identify code that hampers threading performance

Not without its problems
Sometimes fails to report work done on some threads
Data gathering appears to strongly affect job running time and distort findings

The problems are not sufficient to stop me from using VTune

27

