
Playing with puppets

instead of managing your systems

Thomas Bellman
bellman@nsc.liu.se

National Supercomputer Centre
Linköping, Sweden

HEPiX spring 2009



What is Puppet?

http://reductivelabs.com/trac/puppet

A declarative language for defining the configuration of (Unix-like)
machines.

Used to make sure that:

I packages are/are not installed

I config files have the correct contents

I services are/are not running

I and so on...



Short resource example 1

file {
"/etc/ntp.conf":

source => "puppet:///ntp/ntp.conf-client";
"/etc/ntp":

ensure => directory,
owner => "ntp", group => "ntp", mode => 0755;

"/etc/rndc.key":
ensure => link,
target => "/var/named/chroot/etc/rndc.key";

}



Short resource example 2

package {
"ntp":

ensure => installed;
"dhcp":

ensure => absent;
}

service {
"dhcpd":

enable => false, ensure => stopped;
"ntpd":

enable => true, ensure => running;
}



All resource types

* augeas * schedule * nagios command
* cron * selboolean * nagios contact
* exec * selmodule * nagios contactgroup
* file * service * nagios host
* filebucket * ssh authorized key * nagios hostdependency
* group * sshkey * nagios hostescalation
* host * tidy * nagios hostextinfo
* k5login * user * nagios hostgroup
* mailalias * yumrepo * nagios hostgroupescalation
* maillist * zone * nagios service
* mount * zfs * nagios servicedependency
* notify * zpool * nagios serviceescalation
* package * computer * nagios serviceextinfo
* resources * macauthorization * nagios servicegroup

* mcx * nagios timeperiod



Grouping resources into classes

class timeclient
{

package { "ntp": ensure => installed; }
file {

"/etc/ntp.conf":
source => "puppet:///ntp/ntp.conf-client";

"/etc/ntp":
ensure => directory, owner => "ntp", group => "ntp",
mode => 0755, require => Package["ntp"];

}
service {

"ntpd":
enable => true, ensure => running,
subscribe => File["/etc/ntp.conf"];

}
}



What to apply where

class timeserver { ... }
class timeclient { ... }
class dhcpserver { ... }

node armstrong
{

include timeserver
include dhcpserver

}

node goodman, miller, ellington, basie
{

include timeclient
}



Running Puppet

I Standalone
I Using local files (manifests)

(where ”local” can be e.g. NFS-mounted filesystem)
I Typically run from cron

I Client-server
I Client daemon connects to server (Puppet master) at regular

intervals
I Master compiles manifests for client
I Protocol is XMLRPC over HTTPS

(Next version will use REST over HTTPS)
I Authentication of both client and server using X.509

certificates



Why use Puppet?

I Automation

I Documentation

I Version control of all configuration

I Share and reuse

I Off-line system administration

I Structure



Good points about Puppet

I Regular, and human-readable, syntax

I High-level resource specifications

I define host entries instead of editing /etc/hosts
I define services to run/not run instead of explicitly calling

chkconfig/svcadm/...

I Automatically uses yum, apt, chkconfig, svcadm, ...,
depending on operating system

I Dependencies between resources to get proper ordering

I Powerful templating system for file contents

I Parametrized macros

I Extendable (in Ruby)
Write your own resource types, and other extensions

I Active user community

I Responsive developers



Limitations

I Documentation is spotty
I Wiki
I Lots of recipies and ”howtos”, but too little specifying all the

nitty-gritty details
I Some pages are outdated

I You still need to know the names of packages, services and so
on on different operating systems.

I Fairly young tool
I Still evolving
I But fairly few regressions

I Low-level file editing is lacking
I Internal web-server of the Puppet-master daemon doesn’t

scale well
I But can be solved by running it under Apache or Nginx



Our uses of Puppet so far

I Two compute clusters

I Half a storage cluster
The new disk servers in it have been configured using Puppet, but

the older servers haven’t been converted.

I My laptop :-)

I Internal servers (email, DNS, web, ...) this summer



Things to consider when using Puppet

I Separate manifests for each cluster, or a single set to rule
them all?

I What is configuration and what is data?
I httpd.conf is configuration, but the published web pages are

probably not.
I named.conf is configuration, but what about the zone files?
I Are user accounts configuration or data?

I Decide what to manage using Puppet.
I Preferably everything, but some things may be difficult to do

with Puppet.
I Don’t be afraid of writing custom extensions.

I Manage whole files, or only entries in them?



Case study: Joining two clusters

Existing systems:

I One new cluster configured entirely with Puppet
I Dual disks in worker nodes with software RAID-0
I Infiniband network
I One ”analysis node” with more memory and hardware RAID-0

on four external disks
I CentOS 5

I One old cluster (not using Puppet)
I Single disks in worker nodes
I Gigabit ethernet
I Two ”analysis nodes” with lots of memory for running large

jobs interactively
I CentOS 4

Both located across town, with no internet access.
Local sysadmins perform daily administration.



Joining two clusters, continued

The mission:

I Upgrade the user software environment on the old cluster to
become identical to the new cluster.

The method:

I Connect the ethernet switch in the old cluster to the switches
in the new cluster

I Re-install the old worker nodes with CentOS 5 and configure
with Puppet



Joining two clusters, continued

The joined cluster has many types of nodes:

I New worker nodes

I Old worker nodes

I New analysis node

I Interactive login nodes

I File servers

I Cluster server (Torque, DHCP, Puppet-master, ...)

Lots of configuration is common among node types.

But enough differences that having a single node image using e.g.
System Imager would probably become bothersome.



Joining two clusters, continued

Success!

I The joining of the two clusters was very smooth.

I A single cluster with identical software environment on all
nodes.

I Changes only have to be done once.

I Much of the configuration was done in advance, without
access to the clusters.

I Only real problems were due to buggy BIOSes and buggy
firmware in an ethernet switch.


