High Availability using virtualization

Federico Calzolari

Scuola Normale Superiore - INFN Pisa

SCUOLA NORMALE SUPERIORE

Aims

zero cost High availability service

Requirements

full exploitation of virtual environment features

- High Availability definition and measure
- Virtualization definition and features
- Scenario
 - Grid data center

Infrastructure

- Preboot eXecution Environment PXE
- Storage: from NAS to SAN

Solutions

- High availability using virtualization
- Redundancy in virtual environments
- Physical to Virtual migration

Experimental data

Operation in a real crash example

Spin-off

Host on-demand and Cloud computing

High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization.

Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows the running virtual machines to be distributed over a small number of servers, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts.

The 3RC system is based on a finite state machine, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts.

The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system.

High Availability

 system design protocol that ensures a certain degree of operational continuity during a given period.

Fault Tolerance

 property that enables a system to continue operating properly in the event of the failure of some of its components.

Data Reliability - Redundancy

 property of some disk arrays which provides fault tolerance [no data lost in case of disk failure].

supplied by:

Load Balancing

 technique to spread work between many computers, processes, disks or other resources.

Failover

 capability to automatically switch over to a redundant or standby computer server, system, or network.

High availability features

- User does not have to care about how/where to access services/data
- Reduce downtime to a minimum

High availability measure

 Availability is described in "number of nines"; the number N of nines describes a system available a fraction A of the time

 $N = - \log_{10} (1 - A)$

Availability is usually expressed as a percentage of uptime in one year:

- 99.99% • downtime 52.6 minutes / year

Virtualization

- Abstraction of computer resources
- Abstraction layer that allows each physical server to run one or more virtual servers, decoupling operating system and applications from the underlying physical server.

Virtualization benefits

1 service/host:

split a multi processor server into more independent virtual hosts

supplied by:

- VMware: NOT open source, but free version [my choice]
- Xen: open source, free, virtualization and para-virtualization, Kernel patch
- KVM: future?

What can Virtualization do?

- A single server can host multiple Virtual machines, each one providing a specific service.
- More servers can share a common external filesystem to ease virtual disk (VMFS) moving.

Virtualized High availability

- decouple hardware from software
- suspend/recover virtual machines
- virtual machines migration
- increase server density
- better control and manageability

Heartbeat High availability

- host per host redundancy
- double cost for
 - hardware
 - configuration

Heartbeat Classical solution

Grid Data Center

- 1 + Computing element: communication between farm and external (gateway)
- 1 + Storage element: disk server with SRM features
- 1 Batch Queuing System master
- 1 Monitoring service
- BDII: Berkeley Database Information Index (Information provider)
- 5 Services: specific Virtual Organization applications
- 1 + User Interface: user access to Grid
- 1 Cache proxy server: Squid
- N Worker nodes: computational nodes

What is necessary to grant service?

ALL but Worker nodes (~ 20 hosts)

How to provide an automatic host installation?

- DHCP
- DNS HINFO (Host Info) = host_type
- PXE TFTP
- HTTP

- INFN-PISA EGEE Grid node: 2000 CPU, 500 TB disk
- **SNS-PISA** EGEE Grid node: small, testbed
- CNR-ISTI EGEE Grid node: Pre Production Service

to manage up to 2000 virtual machines/disks simultaneously:

16 Gb/s aggregate bandwidth

Storage solutions

- DAS Direct Attached Storage
- NAS Network Attached Storage
- SAN Storage Area Network

Requirement: reliable storage

- RAID Redundant Array of Independent Disks
- DRBD Distributed Replicated Block Device Mirror over Network

RELAXED High availability

- A "relaxed" High availability service is a system able to restore any previously running application in less than 10 minutes from the crash time.
- A relaxed system may ensure the application redundancy required in the greater part of cases.

How can a Relaxed High availability service be achieved?

- Virtual machines are highly portable between computers.
- A virtual machine can pause operation, be moved or copied to another physical computer, and there resume execution exactly where it left off.

Tendency of a system to respond differently to the same stimulus depending on the initial state of the system.

definition by Claudia Guida, Molecular Biologist @IEO Milan

Finite state machine with hysteresis

- Reboot
- Restart
- Reinstall

Each physical host can backup all the others

Requirements

- redundant controller [shared]
- reliable storage
 - SAN or NAS via FC or NFS
 - RAID over network: DRBD

Goals

- relaxed High Availability: recovery time < 10 min</p>
- backup solution ONLY @disaster_time

3RC logo

27/05/2009

Monitor service

check the physical/virtual hosts health status monitor

Remote controller

- perform actions over physical / virtual hosts choice algorithm:
 - reboot
 - restart virtual machine on the same host
 - restart the whole virtual layer
 - move virtual machine to another host
 - reinstall from scratch on the same/another host via PXE

Infrastructure

- DHCP, DNS, HTTP, PXE-TFTP
- Storage architecture
 - SAN, DRDB
- Procedures
 - physical to virtual migration

3RC Architecture

Several redundancy strategies several availability levels

- Virtual machines on external storage
 - problems if software crashes
- Scheduled virtual machines dump: disk, ram, registers
 - dump at scheduled times > recovery at time T_{n-1}
- Virtual machines with OS and MW ready to be mounted
 - virgin machine from disk copy
- Install from scratch: operating system and middleware
 - virgin machine from real installation via PXE

Time schedule

- monitor
 70 sec ± 1
- controller $30 \sec \pm 30$
- re-boot 80 sec ± 10 [PXE: 10 sec + boot: 70 sec]

NON Destructive test

- overload
- shutdown

Recovery time distribution - 10.000 crash test mean 181 sec sigma 10 sec

Destructive test

- rm /boot; reboot
- dd zero /sda; reboot

Reinstall timedistribution - 5.000 crash test
mean542sec
sigma17sec

How to migrate a physical machine to a virtual machine

- physical machine RUNNING
 - create virtual disk
 - mount virtual disk with Linux live distro or Virtualization-tools
 - rsync <real> to <virtual>
 - untar <special path> [/dev]
 - grub install
 - < 20 sec downtime for switch real to virtual</p>
- physical machine STOPPED
 - create virtual disk
 - mount virtual disk with Linux live distro or Virtualization-tools
 - dd <real> to <virtual>
 - grub install

- RECOVER crashed machine in 3 min
- REINSTALL broken machine in 9 min

- SNS-PISA is the first EGEE/LCG Grid node
 - fully virtualized (services + WN)
 - highly available
 - NO downtime after service crash

gridce.sns.it [SNS-PISA Grid node master CE] crashes for an electrical power glitch @4:00 AM

BRC - High Availability Project

GRIDCE crashed virtual machine**ALFA01** primaryphysical host**ALFA04** secondary physical host

@ crash_time the algorithm decides if restart or reinstall virtual machine over the same or another physical host

What 3RC High availability project is for

All the environments satisfied by a Relaxed High availability solution

- computing
- information
- monitoring
- users management
- GRID data center services

It is important to know what a theorem states, but it is probably more important to know what a theorem does not state.

statement by Luigi Picasso, Theoretical Physics Professor @University of Pisa

Mission critical applications

- financial transactions
- security certificates management
- real time controllers
- human health related applications

miracles [at least in the current release]

Host on-demand and Cloud computing

Basic concepts

Virtualization and PXE architecture allows to bring up a server in a few minutes

Possibility to offer host on-demand

- CPU n core
- RAM n GB
- DISK n TB
- Operating System: Linux, Windows
- Middleware and Grid Applications Globus/LCG
- for T time
- at the end of time T hosts will be erased!!!

Thanks

federico.calzolari@sns.it