STATUS AND PLANS OF THE OSQAR EXPERIMENT

Miroslav Sulc on behalf of OSQAR collaboration

Outline

\square OSQAR laser experiments
\square Photon regeneration data analysis
\square Vacuum Magnetic Birefringence

- Chameleon search
\square Cavities and OSQAR - ALPS collaboration
\square Conclusion

Optical Search for QED vacuum magnetic birefringence, Axions and photon Regeneration

Three distinct laboratory experiments in strong magnetic field

1) The photon regeneration effect (photon - axion and axion - photon conversion) is looked for as a Light Shining through the Wall.
2) The Vacuum Magnetic Birefringence, predicted by the QED, could be measured Stituated at GFRN, magnet test hall SM1 18 for the first time.
3)

Chameleon search looks as measurement of afterglow of light, as the photons convert to trapped chameleons and reconvert back to photons in magnetic field, streaming through the windows of the vacuum chamber.

Photon regeneration effect 2014

S ource of scalar or pseudo -scalar particles region

Detection:
counting counting
laser beam

Adjustments to improve the experiment sensitivity

Laser beam was concentrated to very small spot. Optics must allow a change of intensities about 13 orders for switching between alignment and measurement mode without laser spot movement.
18 W CW Verdi laser
from Coherent

Half-wave plate changes light polarization in respect to magnetic field

- Parallel - pseudoscalar
- Perpendicular - scalar

The CCD detector

Run 2014 analysis University of Mainz in Germany and deeply cross-checked at the CNRS/UJF-Grenoble-1 in France

- We find laser positions in start at end of run
\square Define signal region
\square Remaining pixels, which are not exposed to possible ALPs signals, are clustered in sizes that correspond to the signal region and the distribution of their cumulated counts gives the estimate of the expected background for the signal region.
\square Corect temperature induce inhomogenities
\square Remove incristic inhomegenities in gain
\square Exclude cosmic ray hits and hot pixels

Laser spot movement and signal region

Combining Data of Different Runs

\square We have different sized regions in each run

- - Bayesian inference crate combined likelihood model of all valid frames
$\mathcal{L}=\prod_{\text {frame }} \operatorname{Gauss}\left(N_{\text {frame }} \left\lvert\, \operatorname{Pois}\left(\frac{d N}{d t} \cdot t_{\text {frame }}\right)+\mu_{\text {frame }}^{(b k g)}\right., \sigma_{\text {frame }}^{(b k g)}\right)$

The sensitivity from of the background and the recorded photon - flux $\mathbf{d N} / \mathbf{d t}=\mathbf{0 . 4 5}$
$\mathbf{m H z}$ for scalar and $\mathbf{0 . 6 4} \mathbf{~ m H z}$ for PS is given as the Bayesian threshold of non detection at 95%.
Impose fake signal at 2δ level (1.0×10^{-3} photons $/ \mathrm{s}$) on each recorded frame at the background region and repeat analyses
Look at posterior distribution of reconverted photon rate with the imposed fake signal Observed $\mathrm{dN} / \mathrm{dt}=1.1 \pm 0.3 \mathrm{mHz}$

World leading limits in laboratory based LSW Axion/ALPS searches

Total number of runs valid for analyses: 60 beam positions for each setup
Scalar search: 180 hours, 60 runs $2 x 90$ minutes
Pseudo-scalar search: 180 hours, 59 runs $2 x 90$ minutes
Periodic check during data taking of the beam alignment with the CCD
Pressure at operation $<10^{-5} \mathrm{mbar}$
pseudo-scalar:

$$
\mathrm{g}_{\mathrm{A} Y}<3.5 \cdot 10^{-8} \mathrm{GeV}^{-1}
$$

scalar:

$$
\mathrm{g}_{\mathrm{A} Y \gamma}<3.2 \cdot 10^{-8} \mathrm{GeV}^{-1}
$$

for the pseudo scalar and scalar searches for $\mathrm{m}_{\mathrm{A}}<2 \cdot 10^{-4} \mathrm{eV}$
R. Ballou et al. (OSQAR collaboration), "New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from Light Shining Through a Wall", accepted for publication in Phys. Rev. D (2015), arXiv:1506.08082

Correlation analysis in progress

Data on CCD (filtered cosmic)

- 60 measurement in different beam spot positions
- Typical $\sigma=3.3$ per 1 pixel

- 5400 s exposition time

```
Correlation mask (60
positions)
- f=100 in expected
    photon position
- f=1 other pixels
```


Simulation
When signal appears (100 photons) normalised correlation coefficient will increases if the mask has the same position as expected photons

Normalised correlation coefficient

October 20, 2015

VMB

measurement of the Gas Magnetic Birefringence of N2

October 20, 2015
119th Meeting of the SPSC

Measurements of the Cotton-Mouton Effect in N_{2}

OSQAR - CHASE (Chameleon Afterglow Search Experiment)

- Search of Chameleons - SISPs particles
- Filling the jar with chameleons, produced by interaction of real photons with virtual ones - Primakoff effect
G. Raffelt and L. Stodolsky. Phys. Rev. D 37, 1237-1249 (1988)

$$
\mathcal{P}_{\gamma \leftrightarrow \varphi}=\frac{4 \omega^{2} g_{\gamma \gamma}^{2} B^{2}}{m_{e f f}^{4}} \sin ^{2}\left(\frac{m_{e f f}^{2} L}{4 \omega}\right) \quad \begin{aligned}
& \text { M. Ahlers et al., Phys. Rev. D 77, } 015018 \text { (2008) } \\
& \text { H. Gies, D. F. Mota, and D. J. Shaw, Phys. Rev. D 77,025016 (2008) }
\end{aligned}
$$

If the energy ω is lower than the effective mass $m_{\text {eff }}\left(B_{m \rho} \rho_{m}\right)$ of the chameleon field inside the matter that encloses the vacuum then the produced chameleon particles will be trapped inside the vacuum

OSQAR - CHASE 2015 - new optical system

$\square \quad$ CCD-Andor iKon-DU934P-BV Back- Illuminated USB CCD Camera has been rented.

- The CCD sensor is composed of a 2D array of 1024 x 1024 square pixels of $13 \mu \mathrm{~m}$ size.
$\square \quad$ The quantum efficiency of the CCD at 550 nm is 95%,
The sensitivity of our detection system is (0.65 ± 0.03) ADU/photon for all detection system
\square The typical readout noise at 50 kHz is equal to $2.9 \mathrm{e}-/$ pixel the dark current $<0.00012 \mathrm{e}-/ \mathrm{pixel} / \mathrm{s}$ at $-100^{\circ} \mathrm{C}$.

Radiation from Pirani vacuum gauge

Pirani at magnet entrance magnet exit
\square Surprising radiation from Pirani vacuum gauges was observed at ring region on CCD. It is obvious that our optical focusing system can focus the diffuse light to the area with diameter smaller than is one side length of CCD chip.
\square We measure count distribution and total intensity with the time of exposition 5000 s , without binning. We subtracted readout noise 2.077 count per single pixel and dark current noise $9 \cdot 10^{-5}$ count $/ \mathrm{s}$. Resulting signal an CCD from Pirani was ranging from $2 \cdot 10^{-4}$ count/s to $7 \cdot 10^{-4}$ count/s.

Exposure time of 5000 s
The data were corrected from cosmic contamination.
The data were collected before cryopumping.

Vacuum inside the anticryostat

\square When anticryostats has been switched-off, temperature time decay has been much longer than anticipated
\square Stable conditions in temperature and pressure have been reached after 400 h $\left(-178^{\circ} \mathrm{C}\right.$ and $\left.-110^{\circ} \mathrm{C}\right)$
\square Pressure gauges have indicated 1.710^{-6} and $1.9 \quad 10^{-6}$ mbar at the laser and CCD side, respectively.
\square Although such values are much larger than expected, chameleon runs have been performed with valves of the pumping
 groups and vacuum gauge closed.

Reflection coefficient of anticryostat pipe

Photon distribution at output window of magnet
One laboratory and two in-situ measurement were performed

Laboratory test give 35\% reflection for incidence angles up to 70 degrees

1] The glass diffuse plane, placed at the input to anticryostate was illuminated by incoherent standard lamp source.

Good agreement in distribution, absolute value must be still checked

Reflection coefficient of pipe

- 2) Dedicated measurements have been started using punctual photon source, to measure the collection efficiency and check simulation results.
- Source of diffused light -ceramic ball with fiber input
- Can be placed inside pipe at chosen distances from CCD.

Photon distribution at CCD, ball is placed 15 m from CCD

Effect of pipe curvature at horizontal photon distribution. Preliminary analyses from all images confirm averaged reflection coefficient is below 0.35% for incidence angles up to 70 degrees.
Diffused light after more than three reflections can contribute only little to total number of detected photons.
119th Meeting of the SPSC October 20, 2015

OSQAR - CHASE run 2015

Magnetic filed 9 T
laser power 18.5 W valves to Pirani gauges closed valves to pumps closed

Run	Production time [s]	Exposure fimes [s]	Total exposure fime [s]	Starting pressure [10-6 mbar]	Ending pressure $\left[10^{-6}\right.$ mbar]
1	900	50s 100s 200s 400s	750	2.5	2.8
2	900	50s 100s 200s 400s	750	3.9	4.0
3	900	50s 100s 200s 400s	750	4.6	4.8
4	900	50s 100s 200s 400s	750	4.6	4.8
5	17400	$50 \times 800 \mathrm{~s}$	40000	2.1	4.7
6	39600	$43 \times 1000 \mathrm{~s}$	43000	1.9	4.8
7	39000	$43 \times 1000 \mathrm{~s}$	43000	1.7	4.7
8	39000	40×1000 s	40000	1.8	5.0

119th Meeting of the SPSC October 20, 2015

Preliminary data analysis from the Run 2015

\square Quantitative analysis of the recorded data is currently being performed.
\square An analytic estimate of the expected afterglow signal with respect to chameleon mass and coupling to photons is being implemented similarly as for the GammeV-CHASE experiment by computing the chameleon decay rates during filling and during afterglow, from the
 chameleon-photon oscillation probability under magnetic field

- taking account of the bouncing effects of the particles on the walls and reflection coefficient
- Zemax simulations

Preliminary data analysis from the Run 2015

Analysis more delicate than LSW experiment (more model dependent)

Non-magnetic afterglow observed by GammeV-CHASE for $\dagger \leq 120$ s
$B_{g}=g_{g g} M_{P I} \sim B^{-1} P^{-1 / 4} \eta^{-1 / 4}$
With the increases of
B from 5 T to 9 T ,
P from 3.5 W to 18.5 W , η from 0.29 to 0.95
decrease
R from 0.56 to 0.35
The limit for b_{g} can be lowered by a factor 3-4 assuming all other parameters unchanged

Present reference results from GammeV-CHASE J. H. Steffen et al., PRL 105, 261803 (2010)

Cavity for Photon Regeneration

Aim - to profit from the large laser intracavity optical power

\square R\&D have started for VMB, $\mathrm{He}-\mathrm{Ne}$ laser.
\square It is based on the same mechanics, vacuum and electronic parts.
\square High quality mirror layers are necessary
\square The implementation of the resonantly-enhanced conversion scheme* with two long length cavities is challenging with one of the main technical difficulties resulting from the design and realization of active locking systems for two high-finesse Fabry-Perot cavities

[^0]
Seismic control system

\square Dedicated seismic control system similar to the one used for the LIGO and Virgo interferometers has to be developed and implemented.
\square To speed-up the required specific R\&D in this field, dedicated collaboration with ALPS and more specifically with experts from the Advanced LIGO pre-stabilized laser subsystem, is under discussions.

CERN SM1 8 hall - some sources of vibrations from the cryogenic and vacuum systems, from airconditioning, traffic

OSQAR-ALPS collaboration

\square Meeting at DESY, the 8-9 June 2015
\square Meeting at CERN, 17-18 September 2015
\square Report the 2 following possibilities

- 1) Common OSQAR-ALPS for LSW with 2 LHC dipoles \& ALPIlc optics. Mutual benefits of OSQAR/ALPS at CERN are not obvious especially for ALPS.
- 2) An intermediate alternative, minimizing the impact on ALPIlc can be to develop and install only one Fabry-Perot cavity at CERN (gain by a factor of 10 on the di-photon coupling constant, IR laser with TES detector required because of constraints coming from the high power FabryPerot cavity).

Conclusion

Photon regeneration

the best exclusion LSW limit for axions and axion like particles
pseudo-scalar: $\mathrm{g}_{\mathrm{A} \gamma}<3.5 \cdot 10^{-8} \mathrm{GeV}^{-1}$, scalar: $\mathrm{g}_{\mathrm{A} \varphi}<3.2 \cdot 10^{-8} \mathrm{GeV}^{-1}$
VMB
refractive index difference $\Delta n \approx 1.6 \cdot 10^{-14}$ can be measurable at LHC magnets at CERN without cavity

Cavities are needed for real progress at PR and VMB experiments
Chameleons
We expect increase of the present reference exclusion limit of photon -chameleon coupling constants

Perspectives \& Requirements for 2016

\square For 2016, the experimental run will still focus to the chameleon search with a modification of the experimental set-up.
\square The request from the collaboration concerns the possibility of using one of the LHC dipoles at 1.9 K committed for OSQAR together with dedicated resources for a minimum experimental run duration of 6 weeks.

Acknowledgements

The OSQAR collaboration would like to thank the CERN-TE teams of the SM18 test hall (MSC-TF, CRG-OD, VSC-LBV) for their valuable technical contributions and efficient devotion for the operation of both LHC dipoles dedicated to OSQAR as well as the management of CERN-TE department for his continuous support.

[^0]: * P. Sikivie, D. B. Tanner, and Karl van Bibber, Phys. Rev.Lett. 98, 172002 (2007).
 * G. Mueller, P. Sikivie, D.B. Tanner and K. van Bibber, Phys. Rev. D 80, 072004 (2009).

