Status of UA9

W. Scandale on behalf of the UA9 Collaboration

- Introduction
- Measurements and tests in the SPS North Area
- Measurements and tests in the SPS
- Test in LHC
- Requests for 2016

Crystal collimation

- Bent crystals allow deflecting particles by coherent interaction:
 - √ large angle deflection also at high energy
 - reduced interaction probability(e.g. diffractive events, ion fragmentation/dissociation)
 - reduced impedance (less secondary collimators, larger gaps)

BUT

- X small angular acceptance
- X concentration of the losses on a single absorber
- X extrapolation to the highest energy not yet proven
- The UA9 Collaboration is investigating how to use bent crystals as primary collimators/deflectors:
 - operational and machine protection concerns are considered in cooperation with the Collimation Team
 - three installations (since 2014): LHC, SPS, SPS North Area (H8)

Timeline of the UA9 Experiment

- Test with extracted beams at the SPS North Area (few weeks per year):
 - ✓ Crystal beam interactions
 - ✓ Measurement of crystal properties before installation in CERN-SPS and LHC
- Prototype crystal collimation system in the SPS (~ 4 / 5 days per year):
 - ✓ 2009 → First results on the SPS beam collimation with bent crystals (*Phys. Lett. B*, 692, 78–82).
 - ✓ 2010 → Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals (*Phys. Lett. B, 703, 547–551*).
 - ✓ 2012 → Strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam (Phys. Lett. B, 714, 231–236).
 - ✓ 2013 → Optimization of the crystal assisted collimation of the SPS beam (Phys. Lett. B, 726, 182–186)
 - ✓ 2014 → Observation of strong leakage reduction in crystal assisted collimation of the SPS beam (*Phys. Lett. B, 748, 451–454*).
 - ✓ 2015 → Test and validation with beam of the LHC-type goniometer.
- Prototype crystal collimation system in the LHC (16h in 2015):
 - √ 2006 → First of a crystal-assisted collimation layout (Assmann, Redaelli, Scandale EPAC2006).
 - √ 2011 → Letter of Intent (CERN-LHCC-2011-007 / LHCC-I-019 10/06/2011).
 - ✓ 2012 → First goniometer industrially produced suited for the LHC requirements.
 - ✓ 2014 → Two crystals with their goniometers installed in IR7 Beam 1 of LHC (EDMS 1329235)
 - ✓ 2015 → Test of the crystal-assisted collimation with beam at 450 GeV.

Schedule from Oct 2014 to Oct 2015

NA-H8 Test beam

62 days assigned in 8 runs : 44d main user, 18d parasitic

Effective time: ~ 70 % (~30 % lost for machine problems)

2014

Secondary Pion beam (180 GeV)

Main user

- October 13th 19th
- December 8th 15th

Parasitic to TOTEM

- November 18th - 21th

2015

Primary Ar Ion Beam (150 AGeV)

Main user

- February 11th - 15th

Parasitic to PROBA-V (75 AGeV)

- April 1st - 7th

2015

Primary proton beam (400 GeV)

Main User

- April 27th - May 13th

- June 4th - 10th

Parasitic to TOTEM

- June 10th - 15th

SPS tests

4 SPS runs of 24 h with 270 GeV proton beam 28-10-2014 – 25-11-2014 – 7-07-2015 – 14-10-2015

Effective time ~ 70 %

SPS North Area: experimental setup

UA9 Standard setup

FIG. 1: Experimental layout in the H8 beam line.

new detectors for I.N.I. studies

fast scintillators and electronics (2 *ns* coinc. gate)

SPS North Area: LHC twin crystals

Test of twins of Crystals already installed (recently successfully tested) in LHC

- 1 QMP Crystal (PNPI): very good results
- 1 STF Crystal (INFN-Ferrara): possible crystal deformations problems due to the titanium holder

Bending angle of the ST76 strip crystal as a function of time

Date of the test in H8 (beam species)	Bending angle	
	[µrad]	
October 15 th , 2014	70.9	
(pions)		
December 10 th , 2014	81.2	
(pions)		
February 11 th , 2015	77.0	
(Ar ions)		
February 14th, 2015	63.2	
(Ar ions)		
February 15 th , 2015	63.3	
(Ar ions)		
At fabrication in June 2013	51	

Bending angle of the QM33 quasimosaic crystal

Measured bending angle [µrad]	38 ± 2
At fabrication in 2014	44

SPS North Area: new LHC crystals

4 QMP Crystals (PNPI)

Tested before and after LHC standard heating process

QMP46, QMP53 - to be used for installation

QMPXX-bo - crystal after bake-out

QMP52 - is spare crystal for installation

QMP54 - crystal for demonstration purpose

		Beam divergence ±5 urad					
Crystal	run	Deflection Efficiency Angular c					
		urad	%	urad			
QMP46	2737	51.3	69.8	(-6+4)			
QMP46	2791	51.4	67.4	(-9+1)			
QMP46	2798	52.1	70.5	(-122)			
QMP46-bo	3078	50.2	71.2	(-144)			
QMP52	2655	54.0	67.5	(-122)			
QMP52-bo	3063	53.5	69.4	(-9+1)			
QMP53	2664	54.9	71.1	(-1+9)			
QMP53-bo	3043	54.5	71.4	(-6+4)			
QMP54	2805	58.2	69.8	(-10+0)			
QMP54-bo	3101	54.8	69.5	(-5+5)			

2 STF Crystals (INFN-Fe)

Tests with a new titanium holder shows encouraging results about the Crystal deformations problems

	Bending angle [μrad]		Channeling efficiency		Torsion	
	±2.5 μrad	±5 μrad	±2.5 μrad	±5 μrad	p0 (offset)	p1 (torsion)
STF105	49.64	49.48	0.778	0.739	-0.6161± 0.4271	1.457± 0.5125
STF106	40.95	40.64	0.773	0.739	-0.03649± 0.3675	0.279± 0.4523

SPS North Area: Inelastic Nuclear Interaction

Goals:

- Frequency & probability of I.N.I. in Crystals for different orientation: AM, VR, CH and AX
- I.N.I. reduction factor: AM vs CH, CH vs AX
- I.N.I. probability in crystals with different bending radius
- Benchmarks for lons simulations crystal routine

Measurements on ST Crystals, QM Crystals & LHC Crystals

Preliminary results:

Measurements with protons:

- Confirmations of the previous results (2010 UA9 paper)
- First evidence of AX-CH I.N.I. reduction

Measurements with Ar Ions:

- New results never obtained before

Feature measurements with Pb Ions (next November)

I.N.I. reduction in Planar CH

I.N.I.: Axial CH vs Planar CH

AM/CH I.N.I. vs bending R

SPS North Area: Multiple Scattering

The dependence of the mean square deflection angle of multiple scattering on the crystal length

- experiment with 400 GeV/c protons (●)
- theoretical values performed by Gaussian fits of the Moliere distributions (o)

Crystal orientation w.r.t. the beam direction:

- 20 mrad from the crystal axes, in the plane direction
- 3 mrad from the crystal plane

SPS North Area: new crystals tested

Large angle deflection: Long Crystal (20 mm) $\alpha = 0.25$ mrad

SPS: Experimental setup. ALL Setu

Roman Pot $\sim 45 \text{ m}$, $\Delta \mu = 60^{\circ}$ Roman Pot (2 Medipix) (Empty) Collimator Deflected beam 5 Crystals Absorber + 1 spare Collimator (W, 60 cm) BLM ♠ tank (graphite, 1 m) Scraper +\graphite Scraper CpFN Cherenkov Cherenk ov (W, 10 cm) scraper 2 x GEM (W, 10 cm) Cherenkov (fixed) (thin) be piezorgonio CpFM Cherenkov Contra Margrandille High Luminosity CÉRN ale – SPS

 $\sim 60 \text{ m}$, $\Delta \mu = 90^{\circ}$

SPS: leakage reduction in the dispersive area

■ Beam loss rate at high D, has two contributions:

SIXTRACK + CRYSCOL simulation results with BLM7 at QF 5-22

✓	diffractive protons coming from the crystal

√	protons	non	absorbed	in	the	TAL
----------	---------	-----	----------	----	-----	-----

Simulations of SIXTRACK + CRYSCOL (upgraded)

✓ The two fractions are different at the two D_x peaks

✓ Data collected in 2012 with low-sensitivity BLM agree with simulation predictions.

	Location	Crystal orientation	Losses from crystal	Losses from TAL	Total losses	Losses reduction
	BLM5	AM	4.7 10-5	1.2 10-3	1.2 10-3	7
(k	BLM5	СН	7.7 10-7	1.7 10-4	1.7 10-4	~7
	BLM7	AM	1.5 10-4	4.2 10-5	1.9 10-4	
	BLM7	СН	2.1 10-6	6.9 10-6	9.0 10-6	~21

SPS: LHC-type goniometer

- LHC-type goniometers:
 - sophisticated control system developed on the laboratory te bench device
 - the goniometer installed in SPS was used for the first test with the beam in July
- The performance and the reliability of the goniometer is fully verified:
 - closed-loop control system allows to compensate for mechanical vibrations and noise on the measurement system
 - unprecedented resolution (< 0.5 μrad)
 - good angular stability (STD < 0.3 μrad)
 - successful test of the reproducibility in operation with beam ($<<\theta_c=10~\mu rad$)
- The operation of the devices in LHC has been approved after the beam test in SPS!

Angular stability with crystal fixed orientation

Angular scan 0.5µrad/s

SPS data collected on July 2015

SPS: test of the CpFM detector

Scan of a 270 GeV proton beam in the SPS

- Error-function interpolation with Gaussian derivative → σ = 1.2 +/- 0.2 mm.
- Distance crystal CpFM = 58,48 m
- angular spread of the channeled beam at $2\sigma = 21. +/- 2 \mu rad$
- in good agreement with the critical angle at 270 GeV.

Beam vacuum

LHC: experimental setup

- Full crystal collimation prototype system designed in collaboration with the collimation team:
 - Development of a crystal simulation routine for the SIXTRACK tracking code
 - Semi-analytical analysis of channeled particle trajectories to identify candidate layouts
 - Evaluation of the cleaning efficiency and the safety margins as a function of different crystal parameters

Experimental setup installed in 2012:

- 2 piezo-electrical goniometers (horizontal + vertical) with 2 crystals (50 µrad, 4 mm)
- 3 existing secondary collimators (TCSG, 2 horizontal, 1 vertical) as absorbers
- space reserved for 2 in-vacuum detectors (à la CpFM)
- 2 diamond detectors + cables for 5 additional ones

LHC: collimation in the horizontal plane

Crystal collimation setup:

- Crystal at ~ 5.6 σ (1 σ = 1.53 mm)
- Collimators upstream the crystal are retracted
- TCSGs at 7 σ , TCLAs at 10 σ (nominal position)

Repeated angular scans:

- Channeling orientation identified in 2 hours beam time
- Channeling orientation reproducible within few μrad from fill to fill.
- Loss reduction factor in channeling w.r.t. amorphous orientation: ~ 39.
- Redistribution of the losses from the crystal to the absorber

Scan with TCSG:

- Deflection angle: ~ 60 μrad
- Extracted beam size: RMS = 436 μm

LHC: collimation in the vertical plane

Crystal collimation setup:

- Crystal at $\sim 5.4 \sigma$ (1 $\sigma = 1.19 \text{ mm}$)
- Collimators upstream the crystal are retracted
- TCSGs at 7 σ , TCLAs at 10 σ (nominal position)

Angular scans:

- Channeling orientation identified and reproducible within few µrad from fill to fill.
- Loss reduction factor in channeling w.r.t. amorphous orientation: ~ 115.

Scan with secondary collimator:

- Deflection angle: ~ 52 μrad
- Extracted beam size: RMS = 584 μm

Requests for 2016

- Request in H8
- 20 days with 450 GeV protons
- 7 days with Ar or lead ions

GOAL IN H8

- 1. Stability of LHC-type holders for strip crystals
- 2. Calibration of the quartz radiator for LHC
- 3. Inelastic nuclear interactions with Pb ions
- 4. Multistrip /multi-crystals for SPS
- 5. Calibration of Timepix for SPD
- 6. Long crystals for large curvature
- 7. Focusing crystals for SPS
- 8. PXR detector for protons and ions

Request in the SPS

- 3 days with 270 GeV protons
- 1 day with lead ions

GOAL IN the SPS

- 1. Disentangle off-momentum loss produced in the crystal from absorber leakage
- 2. Cherenkov detector for the deflected flux of halo particles
 - Evaluate the collimation efficiency through the deflected flux rate
 - · Analyze the time profile of the deflected flux
 - Collimation efficiency for lead-ions
- 3. Test collimation in ramping mode changing the store energy
- 4. Multistrip /multi-crystals versus single crystals

Acknowledgments

- The Collimation Team for the fruitful collaboration and the support to the UA9
 Collaboration
- All the teams and the groups who provide support to the UA9 experimental installations, including: EN/STI, EN/MEF, EN/HE, BE/ABP, TE/VSC, TE/MPE
- All the groups that supports the UA9 Experiment during data taking activities in SPS and in North Area, in particular: BE/OP, BE/RF

Thank you for your attention!

