Status of UA9

W. Scandale on behalf of the UA9 Collaboration

- Introduction
- Measurements and tests in the SPS North Area
- Measurements and tests in the SPS
- Test in LHC
- Requests for 2016

Crystal collimation

- Bent crystals allow deflecting particles by coherent interaction:
$\checkmark \quad$ large angle deflection also at high energy
$\checkmark \quad$ reduced interaction probability
(e.g. diffractive events, ion fragmentation/dissociation)
$\checkmark \quad$ reduced impedance
(less secondary collimators, larger gaps)

BUT

X small angular acceptance
X concentration of the losses on a single absorber
$X \quad$ extrapolation to the highest energy not yet proven

- The UA9 Collaboration is investigating how to use bent crystals as primary collimators/deflectors:
- operational and machine protection concerns are considered in cooperation with the Collimation Team
- three installations (since 2014): LHC, SPS, SPS North Area (H8)
$\theta_{c h} \cong a_{\text {bending }}$

$$
\begin{aligned}
& \theta_{c} \cong S\left(2 U_{0} / E\right) \\
& { }_{c}=\begin{array}{c}
10 \mathrm{rad} @ 270 \mathrm{GeV} \\
2 \mathrm{rad} @ 7 \mathrm{TeV}
\end{array}
\end{aligned}
$$

Timeline of the UA9 Experiment

- Test with extracted beams at the SPS North Area (few weeks per year):
$\checkmark \quad$ Crystal - beam interactions
$\checkmark \quad$ Measurement of crystal properties before installation in CERN-SPS and LHC
- Prototype crystal collimation system in the SPS (~ $4 / 5$ days per year):
$\checkmark \quad 2009 \rightarrow$ First results on the SPS beam collimation with bent crystals (Phys. Lett. B, 692, 78-82).
$\checkmark \quad 2010 \rightarrow$ Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals (Phys. Lett. B, 703, 547-551).
$\checkmark \quad 2012 \rightarrow$ Strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam (Phys. Lett. B, 714, 231-236).
$\checkmark \quad 2013 \rightarrow$ Optimization of the crystal assisted collimation of the SPS beam (Phys. Lett. B, 726, 182-186)
$\checkmark \quad 2014 \rightarrow$ Observation of strong leakage reduction in crystal assisted collimation of the SPS beam (Phys. Lett. B, 748, 451-454).
$\checkmark \quad 2015 \rightarrow$ Test and validation with beam of the LHC-type goniometer.
- Prototype crystal collimation system in the LHC (16h in 2015):
$\checkmark \quad 2006 \rightarrow$ First of a crystal-assisted collimation layout (Assmann, Redaelli, Scandale EPAC2006).
$\checkmark \quad 2011 \rightarrow$ Letter of Intent (CERN-LHCC-2011-007 / LHCC-I-019 10/06/2011).
$\checkmark \quad 2012 \rightarrow$ First goniometer industrially produced suited for the LHC requirements.
$\checkmark \quad 2014 \rightarrow$ Two crystals with their goniometers installed in IR7 Beam 1 of LHC (EDMS 1329235)
$\checkmark \quad 2015 \rightarrow$ Test of the crystal-assisted collimation with beam at 450 GeV .

Schedule from Oct 2014 to Oct 2015

NA-H8 Test beam

62 days assigned in 8 runs : 44d main user, 18d parasitic Effective time: ~ 70% ($\sim 30 \%$ lost for machine problems)

2014

Secondary Pion beam (180 GeV) Main user

- October $13^{\text {th }}-19^{\text {th }}$
- December $8^{\text {th }}-15^{\text {th }}$

Parasitic to TOTEM

- November $18^{\text {th }}-21^{\text {th }}$

2015

Primary Ar Ion Beam (150 AGeV)
Main user

- February 11th $-15^{\text {th }}$

Parasitic to PROBA-V (75 AGeV)

- April $1^{\text {st }}-7^{\text {th }}$

2015

Primary proton beam (400 GeV)
Main User

- April $27^{\text {th }}$ - May $13^{\text {th }}$
- June $4^{\text {th }}-10^{\text {th }}$

Parasitic to TOTEM

- June $10^{\text {th }}-15^{\text {th }}$

SPS North Area: experimental setup

UA9 Standard setup

FIG. 1: Experimental layout in the H8 beam line.
$+\quad$ new detectors for I.N.I. studies

fast scintillators: and electronics
(2 ns coinc. gate)

SPS North Area: LHC twin crystals

Test of twins of Crystals already installed (recently successfully tested) in LHC

- 1 QMP Crystal (PNPI): very good results
- 1 STF Crystal (INFN-Ferrara): possible crystal deformations problems due to the titanium holder

Bending angle of the ST76 strip crystal as a function of time

Date of the test in H8 (beam species)	Bending angle [$\mu \mathrm{rad}]$
October $15^{\text {th }}, 2014$ (pions)	70.9
December $10^{\text {th }}, 2014$ (pions)	81.2
February $11^{\text {th }}, 2015$ (Ar ions)	77.0
February $14^{\text {th }}, 2015$ (Ar ions)	63.2
February $15^{\text {th }}, 2015$ (Ar ions)	63.3

SPS North Area: new LHC crystals

4 QMP Crystals (PNPI)

Tested before and after LHC standard heating process
QMP46, QMP53 - to be used for installation QMPXX-bo - crystal after bake-out QMP52 - is spare crystal for installation QMP54 - crystal for demonstration purpose

2 STF Crystals (INFN-Fe)

Tests with a new titanium holder shows encouraging results about the Crystal deformations problems

	Bending angle [$\mu \mathrm{rad}$]		Channeling efficiency		Torsion	
	$\pm 2.5 \mu \mathrm{rad}$	$\pm 5 \mu \mathrm{rad}$	$\pm 2.5 \mu \mathrm{rad}$	$\pm 5 \mu \mathrm{rad}$	p0 (offset)	p1 (torsion)
STF105	49.64	49.48	0.778	0.739	$-0.6161 \pm$ 0.4271	$1.457 \pm$ 0.5125
STF106	40.95	40.64	0.773	0.739	$-0.03649 \pm$	$0.279 \pm$ 0.3675

SPS North Area: Inelastic Nuclear Interaction

Goals:

- Frequency \& probability of I.N.I. in Crystals for different orientation: AM, VR, CH and AX
- I.N.I. reduction factor: AM vs CH, CH vs AX
- I.N.I. probability in crystals with different bending radius
- Benchmarks for lons simulations crystal routine

Measurements on ST Crystals, QM Crystals \& LHC Crystals

Preliminary results:

Measurements with protons:

- Confirmations of the previous results (2010 UA9 paper)
- First evidence of AX-CH I.N.I. reduction

Measurements with Ar lons:

- New results never obtained before

Feature measurements with Pb lons (next November)

I.N.I. reduction in Planar CH

AM/CH I.N.I. vs bending R

SPS North Area: Multiple Scattering

The dependence of the mean square deflection angle of multiple scattering on the crystal length

- experiment with $400 \mathrm{GeV} / \mathrm{c}$ protons (•)
- theoretical values performed by Gaussian fits of the Moliere distributions (○)

Crystal orientation w.r.t. the beam direction:

- 20 mrad from the crystal axes, in the plane direction
- 3 mrad from the crystal plane

SPS North Area: new crystals tested

Large angle deflection: Multi-strip crystal

Large angle deflection: Long Crystal (20 mm) $\alpha=0.25 \mathrm{mrad}$

Focusing crystal device

Linear dependence of
bending angle vs transversal coordinate

W. Scandale - SPSC 20/10/2015

10

SPS: Experimental setup

SPS: leakage reduction in the dispersive area

\square Beam loss rate at high D_{x} has two contributions:
\checkmark diffractive protons coming from the crystal
\checkmark protons non absorbed in the TAL
Simulations of SIXTRACK + CRYSCOL (upgraded) \checkmark The two fractions are different at the two D_{x} peaks
\checkmark Data collected in 2012 with low-sensitivity BLM agree with simulation predictions.

SIXTRACK + CRYSCOL simulation results with BLM7 at QF 5-22
with simulation predictio

Location	Crystal orientation	Losses from crystal	Losses from TAL	Total losses	Losses reduction
BLM5	AM	4.710^{-5}	1.210^{-3}	1.210^{-3}	
d)	BLM5	CH	7.710^{-7}	1.710^{-4}	1.710^{-4}
BLM7	AM	1.510^{-4}	4.210^{-5}	1.910^{-4}	~ 7
BLM7	CH	2.110^{-6}	6.910^{-6}	9.010^{-6}	~ 21

SPS Beam

- BLM @ the crystal R=18
- BLM 5 @ $D_{x} \quad R=8$

Angular stability with crystal fixed orientation

SPS: LHC-type goniometer

- LHC-type goniometers:

- sophisticated control system developed on the laboratory te bench device
- the goniometer installed in SPS was used for the first test with the beam in July
- The performance and the reliability of the goniometer is fully verified:
- closed-loop control system allows to compensate for mechanical vibrations and noise on the measurement syste

- unprecedented resolution ($<0.5 \mu \mathrm{rad}$)
- good angular stability (STD < $0.3 \mu \mathrm{rad}$)
- successful test of the reproducibility in operation with beam ($\ll \theta_{c}=10 \mu \mathrm{rad}$)
- The operation of the devices in LHC has been approved after the beam test in SPS!

SPS: test of the CpFM detector

Scan of a 270 GeV proton beam in the SPS

- Error-function interpolation with Gaussian derivative $\rightarrow \sigma=1.2+/-0.2 \mathrm{~mm}$.
- Distance crystal - CpFM $=58,48 \mathrm{~m}$
- angular spread of the channeled beam at $2 \sigma=21 .+/-2 \mu \mathrm{rad}$
- in good agreement with the critical angle at 270 GeV .
I. Scandale - SPSC 20/10/2015

LHC: experimental setup

Full crystal collimation prototype system designed in collaboration with the collimation team:
$\checkmark \quad$ Development of a crystal simulation routine for the SIXTRACK tracking code
$\checkmark \quad$ Semi-analytical analysis of channeled particle trajectories to identify candidate layouts
$\checkmark \quad$ Evaluation of the cleaning efficiency and the safety margins as a function of different

Experimental setup installed in 2012:

- 2 piezo-electrical goniometers (horizontal + vertical) with 2 crystals ($50 \mu \mathrm{rad}, 4 \mathrm{~mm}$)
- 3 existing secondary collimators (TCSG, 2 horizontal, 1 vertical) as absorbers
- space reserved for 2 in-vacuum detectors (à la CpFM) crystal parameters

2 diamond detectors + cables for 5 additional ones

LHC: collimation in the horizontal plane

- Crystal collimation setup:
- \quad Crystal at $\sim 5.6 \sigma(1 \sigma=1.53 \mathrm{~mm})$
- Collimators upstream the crystal are retracted
- TCSGs at 7σ, TCLAs at 10σ (nominal position)
- Repeated angular scans:
- Channeling orientation identified in 2 hours beam time
- \quad Channeling orientation reproducible within few $\mu \mathrm{rad}$ from fill to fill.
- Loss reduction factor in channeling w.r.t. amorphous orientation: ~ 39.
- Redistribution of the losses from the crystal to the absorber
- Scan with TCSG:
- Deflection angle: ~ $60 \mu \mathrm{rad}$
- Extracted beam size: $\mathrm{RMS}=436 \mu \mathrm{~m}$

LHC: collimation in the vertical plane

- Crystal collimation setup:
- \quad Crystal at ~ $5.4 \sigma(1 \sigma=1.19 \mathrm{~mm})$
- Collimators upstream the crystal are retracted
- TCSGs at 7σ, TCLAs at 10σ (nominal position)
- Angular scans:
- Channeling orientation identified and reproducible within few μ rad from fill to fill.
- Loss reduction factor in channeling w.r.t. amorphous orientation: ~ 115 .
- Scan with secondary collimator:
- Deflection angle: ~ 52 rad
- Extracted beam size: RMS $=584 \mu \mathrm{~m}$

Requests for 2016

- Request in H8

- 20 days with 450 GeV protons
- 7 days with Ar or lead ions

GOAL IN H8

1. Stability of LHC-type holders for strip crystals
2. Calibration of the quartz radiator for LHC
3. Inelastic nuclear interactions with Pb ions
4. Multistrip /multi-crystals for SPS
5. Calibration of Timepix for SPD
6. Long crystals for large curvature
7. Focusing crystals for SPS
8. PXR detector for protons and ions

- Request in the SPS

- 3 days with 270 GeV protons
- 1 day with lead ions

GOAL IN the SPS

1. Disentangle off-momentum loss produced in the crystal from absorber leakage
2. Cherenkov detector for the deflected flux of halo particles

- Evaluate the collimation efficiency through the deflected flux rate
- Analyze the time profile of the deflected flux
- Collimation efficiency for lead-ions

3. Test collimation in ramping mode changing the store energy
4. Multistrip /multi-crystals versus single crystals

Acknowledgments

- The Collimation Team for the fruitful collaboration and the support to the UA9 Collaboration
- All the teams and the groups who provide support to the UA9 experimental installations, including: EN/STI, EN/MEF, EN/HE, BE/ABP, TE/VSC, TE/MPE
- All the groups that supports the UA9 Experiment during data taking activities in SPS and in North Area, in particular: BE/OP, BE/RF

Thank you for your attention!

