F-theory at order α'³

Raffaele Savelli

IPhT - CEA/Saclay

CERN, October 20, 2015

Based on work with:

R. Minasian and T. Pugh

arXiv:1506.06756

Context

- Topic is quantum corrections (in g_s and α '). Need control over them to understand vacuum structure of string theory & its EFT.
- Here I focus on the Type IIB corner of the string landscape:
 - \exists efficient probe into the strong g_s regime \rightarrow F-theory; [Vafa `96]
 - All distinctive features of GUT models can be accommodated; [Donagi, Wijnholt; Beasley, Heckman, Vafa `08]
 - One has the Large Volume Scenario as promising paradigm of moduli stabilization. [Balasubramanian, Berglund, Conlon, Quevedo `05]
- Final target is the 4D, N=1 EFT of Type IIB on CY₃ with D7/O7:
 - Knowledge of quantum corrections is still very limited, especially in the effective Kähler potential.
 - They play a key role in the phenomenology of these vacua.

Goal

• Most notable example is a certain $O(\alpha'^3)$ correction to the CY₃ volume:

$$K = -2 \log \left(\mathcal{V}_3 - \frac{\zeta(3) \chi(\text{CY}_3)}{32\pi^3 g_s^{3/2}} \right)$$

- Due to closed strings \Rightarrow N=2 sector; [Antoniadis, Ferrara, Minasian, Narain `97]
- Shown to survive orientifolding $N=2 \rightarrow N=1$. [Becker, Becker, Haack, Louis `02]
- Main aim: Study possible, genuinely N=1 modifications of CY₃ volume.
- Using F-theory is convenient, as:
 - It "geometrizes" all g_s effects of Type IIB, and it only needs to be corrected in α ;
 - It includes open string effects, through 7-brane backreaction.

F-theory

12D theory: Auxiliary T² fibered over the 10D string space

 T^2 cplx-str = axio-dilaton $\tau = C_0 + ie^{-\phi}$

varies holomorphically with $SL(2,\mathbb{Z})$ transitions

Torus size is not physical! Bookkeeping device of 7-brane backreaction

 \nexists fundamental description (yet): \nexists (1,11) sugra \Longrightarrow beyond metric spaces (?)

So far, F-theory is accessed only through limits and dualities ...

F/M-theory duality

• Start with M-theory on a T²:

- Reduce M to IIA along A.
- T-dualize IIA to IIB along B.
- Take the $v = Vol(T^2) \rightarrow 0$ limit.
- → Type IIB string theory with varying axio-dilaton.
 - IIB metric in Einstein frame and IOD Poincaré: $r \sim v^{-3/4}$.
 - M-theory scale is small compared to string length: $l_M / l_S \sim v^{1/4}$.
- \rightarrow F-theory α' corrections \Leftrightarrow IID sugra l_M corrections surviving $v \rightarrow 0$.

Two derivatives

- Let's warm-up with $O(\alpha'^0)$.
 - Take M-theory $O(l_M^0)$ action and reduce it (to 0-modes) on T^2 :

$$S_0^{(11)} \sim \frac{1}{l_M^9} \int R_{\rm sc}^{(11)} *_{11} 1 \qquad \qquad S_0^{(9)} \sim \frac{\nu \, l_M^2}{l_M^9} \int \left(R_{\rm sc}^{(9)} - 2 \, P \cdot \bar{P} \right) *_9 1$$

$$S_0^{(10)} \sim \frac{1}{l_s^8} \int \left(R_{\rm sc}^{(10)} - 2 \, P \cdot \bar{P} \right) *_{10} 1$$

where we used the T² metric $\frac{\nu}{\operatorname{Im} \tau} \left(\begin{array}{cc} 1 & \operatorname{Re} \tau \\ \operatorname{Re} \tau & |\tau|^2 \end{array} \right)$ and P is the U(I)_R -covariant quantity $P = \frac{i}{2\operatorname{Im} \tau} \, \nabla \tau$ of charge 2.

- We reach <u>same</u> result by $U(I)_R$ -invariance \Leftrightarrow "I2D diff-invariance", i.e. reduce on T^2 $S_0^{(12)} \sim \frac{1}{l_s^8} \int R_{\mathrm{sc}}^{(12)} *_{10} 1 \to \text{integral on I0D slice.}$

Warning: No 12D lift of the 10D measure!

Eight derivatives

- At $O(\alpha^{3})$ we have non-trivial dynamics.
 - 0-mode reduction of $O(l_M^6)$ action is now killed by $v \rightarrow 0$:

$$S_3^{(9)} \sim \frac{1}{r} \longrightarrow 0$$

- We must take into account KK modes on T²! How?
- Make them run in the loop of scattering amplitude of 4 9D gravitons: [Green, Gutperle, Vanhove `97]
 - ▶ The loop generates an extra factor of $f_0(\tau, \bar{\tau}) \cdot \nu^{-3/2}$, so that

$$S_3^{(11)} \sim \frac{1}{l_M^3} \int t_8 t_8 (R^{(11)})^4 *_{11} 1 \qquad \qquad S_3^{(10)} \sim \frac{1}{l_s^2} \int f_0(\tau, \bar{\tau}) \, t_8 t_8 (R^{(10)})^4 *_{10} 1$$

• f_0 holds all g_s corrections compatible with SUSY. For $(\text{Im } \tau)^{-1} = g_s << 1$

$$f_0(\tau, \bar{\tau}) \approx \underbrace{\frac{2\zeta(3)}{g_s^{3/2}}}_{\text{1-loop}} + \underbrace{\frac{2\pi}{3}g_s^{1/2}}_{\text{1-loop}} + \underbrace{\mathcal{O}(e^{-1/g_s})}_{\text{D}(-1)}$$

From I2D to I0D

- A richer kinematics is missing here: Can get it ALL from the I2D trick! 0-mode reduction on T^2 of $S_3^{(12)} \sim \frac{1}{l_s^2} \int t_8 t_8 (R^{(12)})^4 *_{10} 1$.
- The full I0D action is a complicated sum of $U(I)_R$ -invariant couplings, written in terms of $R^{(10)}$, P and DP $(D \rightarrow U(I)_R$ -covariant derivative).
- Check? Possible at 4pt level. Result known from tree-level string amplitudes: [Policastro, Tsimpis `06 - `08]

$$S_3^{(10)}|_{4 ext{pt}} \sim \frac{1}{l_s^2} \int \left\{ t_8 t_8 \left[(R^{(10)})^4 + 24 (R^{(10)})^2 |DP|^2 \right] + \widehat{\mathcal{O}}_1 \left[(|DP|^2)^2 \right] \right\} *_{10} 1$$
 perfect match!

Things work also for the parity odd/odd sector:

0-mode reduction on T² of
$$S_3^{(12)} \sim \frac{1}{l_s^2} \int \epsilon_{12} \epsilon_{12} (R^{(12)})^4 *_{10} 1$$
.

• Restricting to 4pt \Rightarrow $S_3^{(10)}|_{4pt} = 0$ \checkmark as expected!

Beyond tree-level

- Price we pay: Miss τ dynamics and hence all g_s corrections.
 - Use SUSY + SL(2)-invariance to restore them.
 - ▶ At perturbative level: Just I-loop for all terms $\rightarrow 2 \pi/3$.
 - "Cusp forms" are ruled out: D(-1) corrections are universally given by f_0 . [Pioline '98]
- Our final result :

$$S_3^{(12)} = \frac{1}{(2\pi)^7 \cdot 3 \cdot 2^{11} \cdot l_s^2} \int f_0(\tau, \bar{\tau}) \left[t_8 t_8 + \frac{1}{96} \epsilon_{12} \epsilon_{12} \right] (R^{(12)})^4 *_{10} 1$$

It reproduces the g_s-exact Type IIB action at $O(\alpha^{3})$ with no flux.

It contains couplings of $R \& \tau$ at all-orders \Rightarrow prediction beyond 4pt.

4D N=1 compactifications

- Reduce F-theory on smooth CY_4 , elliptically fibered over B_3 , with zero-section: $B_3 \rightarrow CY_4$.
 - Two-derivative action yields classical volume of base:

$$S_0^{(4)} = \frac{1}{2\pi\alpha'} \int \mathcal{V}_b R_{\rm sc}^{(4)} *_4 1$$

- Eight-derivative action leads to the correction:

$$S_{0+3}^{(4)} = \frac{1}{2\pi\alpha'} \int \left(\mathcal{V}_b - \frac{1}{64\pi^3} \int_{B_3} f_0(\tau, \bar{\tau}) c_3(CY_4)|_{B_3} \right) R_{sc}^{(4)} *_4 1$$

- ▶ For constant $\tau \Rightarrow \text{old } N=2 \text{ correction } (B_3 = CY_3);$
- ▶ N=I vacua: Correction is non-topological (τ varies over B₃);
- ▶ Weyl rescaling induces correction to 4D, N=1 Kähler potential.

Weak coupling

- Correction simplifies when going to weak string coupling.
 - Sen (`97): Restrict CY₄-complex structure s.t. $g_s \rightarrow 0$ is well-defined.
 - \rightarrow Type IIB on CY₃ \rightarrow B₃ branched double cover.
 - \rightarrow O7-plane wrapping branch locus: In cohomology $D_{O7} = C_1(B_3)$.

$$\tilde{\mathcal{V}}_3 = \mathcal{V}_3 - \frac{\zeta(3)}{32\pi^3 g_s^{3/2}} \left(\chi(\text{CY}_3) + 2 \int_{\text{CY}_3} D_{\text{O}7}^3 \right) + \mathcal{O}(g_s^{-1/2})$$

- ▶ Topological correction at closed-string tree-level.
- Next-to-leading: tree-level of open + unorientable strings.
- ▶ Arises from graviton two-point function in orientifold backgrounds.
- Absent in toroidal models!

Caveats / Open questions

- Our I2D $O(\alpha'^3)$ action is only checked at 4pt!
 - ▶ Test it beyond 4pt: 5pt amplitude computation or M/F duality.
- Employ I2D logic to study the F_3/H_3 -flux sector in I0D at $O(\alpha^{3})$.
- Correction to Weyl rescaling does not fully determine Kähler potential!
 - ▶ Derive corrections to kinetic terms of moduli. [Berg, Haack, Kang, Sjörs `14]
- Include corrections to the vacuum solution, such as warping effects. [Grimm, Pugh, Weissenbacher `14]; [Martucci `14]
- Our correction persists on singular CY₄! Are there more?
- Study the 4D scalar potential.