Bkg impact on FP420

G4 simulation for FP420 in CMSSW

A.Zhokin for FP420 Bkg meeting 14/11/2008

Overview

- Introduction (p. 3)
- MB overlap Bkg (p. 4-10)
- Secondaries from MB (p. 11-15)
- **BeamGas Bkg** (p. 16-17)
- MomCleaning Bkg (p. 18)
- **Conclusions** (p. 19-20)

Background sources for FP420

(rates at IP5 for $dx>20 \sigma x$)

1) overlap background:

MBPU(beam1,2 rates:r1,2=0.32), Late2ndturnPU(r1=0.,r2=0.039)

- 2) secondaries from MB interactions in B11B (lost MBPU) correlate in time with IP interaction with rate 0.00265 for mainly photons and average number of 29 particles per event at Z=420m
- 3) beam-gas particles: collisions between beam protons and residual gas occurs close to FP420 set up -> DistantGas(r1=0.005,r2=0.008)
- 4) beam-halo particles: tails of momentum cleaning halo, circulating in the machine and not correlated in time with IP particles -> MC(r1,2=0.)

MB overlap Bkg

- the file with digi level response in detector was prepared using 20K MinBias($\sigma \sim 80$ mb) single pp interactions at IP generated by <u>PYTHIA</u>
- mixing of Signal and MB Bkg take into account Lumi=10^{34} sm-2 s-1 which provide digi response in detector from >~ 25 MB interactions per one bunch crossing (no ToF cuts) (dedicated MixModule is available in CMSSW)

- --> MB MARS files cfp420.b1 & cfp420.b2 :
- 20M inelastic interactions (σ_{inel}=84.5mb) in IP5 per beam
- "Hit" records with $|x| > 7\sigma x$ and $|y| > 7\sigma y$ at 420.0 m downstream of IP5

(?)

but not so clear how to mix Signal with MB info available in these files

MinBias response in detector

for L=10^{34} sm-2 s-1 with 25 interactions/bx

- MB rate to have at least one track in detector ~ 30%;
- multiplicity for MB particles in FP420 detector:

P1 = 26.%, P2 = 1.6%, P3 = 1.7%, P4 = 0.0% ... (preliminary estimation of multiplicity rates r_i in FP420

(Signal) & (Signal(in detector acceptance)+MBPU(real rate))

2000 events of ExHuMe: gg->H(120)->bbar are generated; For 759 events only the proton is available in +FP420 detector acceptance because of detector position, dimensions and HecTransport

update for MI rates

and events losses in reconstruction of single protons with

70%Si30%Al material for blades

	2 station layout	3 station layout
MI rates (no MI	means one SimHit pe	r layer)
inline7TeVprotons	6.8%(was 5.4)	10.1%(was 8.1)
inline7TeVprotonsHecTransported	7.9%	
Hbb(VtxSmearedFlat)	7.5%	
Hbb(VtxSmearedEarly10TeVCollision)	7.8%	
Event los	sses (w/ χ 2 cut $<$ 2.0)	
inline7TeVprotons	7.1%(was 5.2)	10.4%(was 7.8)
inline7TeVprotonsHecTransported	6.8%	comparable, but it does not mean that
Hbb(VtxSmearedFlat)	7.1%	all MI events gone with applied χ^2 cut:
Hbb(VtxSmearedEarly10TeVCollision)	7.5%	some of them survive in selected sample; some noMI events rejected by χ 2<2 cut;
Eff. of 2 trace	cks reconstruction	
	86%(was 90)	80%(was 85)

Estimation of detector occupancy by tracks for Signal+MBPU case

Signal w/o MBPU, 759 protons are in detector acceptance:

+ 702

tracks ->

-> 7.5% MI losses

Signal with MBPU:

$$\rightarrow$$
 w/o MI (=1track)

(=2tracks)

759*0.26=197

197*0.86=169

$$42+28+7 = 77$$

0

113

1

tracks

 $77(+...\chi 2Cuts) + 495(-...\chi 2Cuts) + 169 + 9 + 9 \leftarrow -- track occupancy estimation$

+ 458

Cuts) +
$$495(-...\chi 2Cuts)$$
 + 169

9 <-- tracks reconstructed with χ2 criteria

so, estimation and simulation in 5% agreement (~ 35/700)

Momentum&Q2 for (Signal) & (Signal(in detector acceptance)+MBPU)

select one only track with highest momentum if #tr. > 1

(Signal(out of detector acceptance)+MBPU) -> fake signal from pure MB

for 2000 events generated with ExHuMe: gg->H(120)->bbar, the 567 events are with <u>transported</u> at 420m proton but <u>outside</u> +FP420 detector <u>acceptance</u> -> response in detector only from MB particles

-10-

Single particles of B11B Bkg

track selection: – in detector acceptance and $\chi 2/ndof < 2$; no E_part. cut

Impact on detector from B11B Bkg

{estimation(I): Hbb Signal + B11B single particles mixed with rate 1.0}

Estimation of track's detector occupancy by 29 Bkg particles at Z=420m with X>20 σ x: 29*0.5%=0.2 (=1.0 for ϵ =3.5% with loose track selection)

(remember: $20\mathbf{O}x = 5.2$ mm for beam1;=4.8mm for beam2 and 4.7mm – edge of detector)

Rate of events with Signal track accompanied by track(s) of B11B Bkg is 0.00265 (0.27%). Hence, event losses are negligible if even Signal proton is not reconstructed in all such events. Nevertheless, the estimation(I)* for rate of real losses is just 0.03%.

* One can mix Signal (Hbb) and B11B Bkg of M=29 at z=420m with rate:R=0.00265, M=29 . However, we do not have file with M=29 in one Bkg event but can use file with events with single Bkg particles increasing rate to R'=R*M=0.07685 . Besides, in this file there are weighted events but we should admix single tracks with weight=1. Efficiency ϵ ' calculated without use of weights is 0.064 and we need to correct rate: R" = R'*(ϵ / ϵ ') = 0.07685*0.0047/0.064 = 0.00564. In MixingModule of CMSSW one can not mix B11B Bkg events to Signal with fractional rate but only as whole #PU events. Admixing 1 PU event to signal we assume increase of R" by factor 1./0.00564~177. The 5% Signal loss obtained in this case should be decreased by this factor to be equals 5%/177 = 0.03%.

for estimation(I):

Hbb signal in acceptance mixed with one B11B Bkg track of leak.out file (real rate increased by factor 177)

-13-

Impact on detector from B11B Bkg

{estimation(II): Hbb Signal mixed with B11B Bkg of particle multiplicity=29 and rate 1.0}

192+290+189+74+10+2 -> losses:192/757=**25.4**%, hence, rate of real losses: **0.254*0.27**%=**0.07**% ~38% of events with one track occupancy

105

364

(Signal(out of detector acceptance)+B11B) -> fake signal from secondaries

for 2000 events generated with ExHuMe: gg->H(120)->bbar, the 578 events are with <u>transported</u> at 420m proton but <u>outside</u> +FP420 detector <u>acceptance</u> -> response in detector only from B11B Bkg

15 η F-15-

23K ev.

(Signal) & (Signal(in detector acceptance)+BGas(rate=1.))

no any hit and hence rec. tracks

Conclusions

the loss of Signal protons accompanished by MB Bkg is in agreement w/ loss estimation based on MI and is about 15%(see p.8) that is 2 time higher than losses w/o MBPU;

(MBPU was added to Signal with a real rate corresponding to L=10^34 sm-2 c-1)

(this rate is ~ 0.3/bx with mainly one Bkg track occupancy)

- all tracks are reconstructed with $\chi 2 < 2$. in the events w/ MBPU; with simple criterion of selection of highest momentum track there are 20% losses of signal track for P': 6.8-7 TeV/c and 33% for Q2>2.5 GeV2 (10.5% w/o MBPU)(see p.9) (a dedicated criteria to select Signal proton in a more one track sample of events can reduce fake track contamination);
- in Hbb Signal sample with transported proton the contamination of fake events from MB Bkg is order of 12% for Q2 range < 1 GeV2 (see p.10)
- with efficiency ~ 1.5% (see p.16) the tracks in FP420 detector are reconstructed with χ2<2.
 from particles of BeamGas Bkg;

for Signal events accompanished by BGas Bkg of rate 0.005 there are 91.3% of events with occupancy of one track, 1.5% - of 2 tracks(see p.17), and signal track losses order of 0.2%;

Conclusions (cont.)

✓ no hits and tracks in FP420 detector reconstructed from any single particle of MomentumCleaning Bkg(see p.18)

for single particles of B11B Bkg there are
no tracks reconstructed in the detector at |y| > 2mm & x > 18mm,
no tracks reconstructed from neutrons,
~0.05% of reconstructed tracks from photon impack on the detector

the loss of events because of B11B Bkg PU is negligible (~0.27%) if even Signal proton is not reconstructed at all for all such events, but nevertheless, the estimation with real particle multiplicity (m=29) of event losses is just 0.07% (see p.14)

(~38% of events with one track detector occupancy for PU events)

(~36% of events with detector occupancy by >=2 tracks for PU events)

for case of pure B11B Bkg w/ m=29(no Signal track in detector acceptance) there are:

~63% of events with well reconstructed tracks within χ 2<2;

~38% of events with one track occupancy(see p.15);

~24.7% of events with occupancy >=2 tracks;

(the detector at beam1 will be occupied by this kind of Bkg w/ rate ~0.00265)

Backup

PYTHIA MBE Processes

Processes:

Subprocess	Generated ev.	Sigma, (mb)
0 All included subprocesses	13220	1.014E+02
11 f + f' \Rightarrow f + f' (QCD)	916	1.251E+01
12 f + fbar \Rightarrow f' + fbar'	0	0.000E+00
13 f + fbar \Rightarrow g + g	3	2.302E-02
$28 f + g \Rightarrow f + g$	1398	1.073E+01
$53 g + g \Rightarrow f + fbar$	103	7.904E-01
$68 g + g \Rightarrow g + g$	4062	3.117E+01
91 Elastic scattering	2827	2.221E+01
92 Single diffractive (XB)	1000	7.151E+00
93 Single diffractive (AX)	923	7.151E+00
94 Double diffractive	1274	9.687E+00
95 Low-pT scattering	0	0.000E+00

MBE Processes (continuation)

Rates:

$$L=10^{34}cm^{-2}s^{-1}$$
, $\sigma_{MinBias}=101.4mb$, bunch time width $Tb=25~ns$, total number of LHC bunches $Nb_{total~LHC}=3564$, number of filled bunches $Nb_{filled}=2808$, $Frequency=40MHz$

$$\epsilon_{transported} = N_{420mTransported}/N_{tot} = 3560/13220 = 0.27$$
 $\epsilon_{fp420} = N_{fp420}/N_{tot} = 100/13220 = 0.0076,$ (0.76%)

$$\begin{split} N_{interactions}^{total} &= L \cdot \sigma_{MinBias} \cdot Tb \cdot (Nb_{total\ LHC}/Nb_{filled}) = \\ &\quad 10^{34} \cdot 101.4 \cdot 10^{-3} \cdot 10^{-24} \cdot 25 \cdot 10^{-9} \cdot 3564/2808 = 32.2 \\ N_{interactions}^{fp420} &= N_{interactions}^{total} \cdot \epsilon_{fp420} = 0.25 \\ Rate_{fp420} &= N_{interactions}^{fp420} * Frequency = 0.25 \cdot 40 \cdot 10^6 = 1.00 \cdot 10^7 protons/sec \end{split}$$

MBE w/o ES (← CMSSW default)

Rates:

 $L=10^{34}cm^{-2}s^{-1}$, $\sigma_{MinBias}=79.24mb$, bunch time width Tb=25~ns, total number of LHC bunches $Nb_{total~LHC}=3564$, number of filled bunches $Nb_{filled}=2808$, Frequency=40MHz

$$\epsilon_{acc} = N_{420mTransported}/N_{tot} = 400/6000 = 0.067$$

 $\epsilon_{fp420} = N_{fp420}/N_{tot} = 54/6000 = 0.009$

$$\begin{split} N_{interactions}^{total} &= L \cdot \sigma_{MinBias} \cdot Tb \cdot \left(Nb_{total\ LHC}/Nb_{filled}\right) = \\ &= 10^{34} \cdot 79.24 \cdot 10^{-3} \cdot 10^{-24} \cdot 25 \cdot 10^{-9} \cdot 3564/2808 = 25.1 \\ N_{interactions}^{fp420} &= N_{interactions}^{total} \cdot \epsilon_{fp420} = 0.23 \\ Rate_{fp420} &= N_{interactions}^{fp420} * Frequency = 0.23 \cdot 40 \cdot 10^6 = 0.92 \cdot 10^7 protons/sec \end{split}$$

 $\implies \sigma_{MinBiasWithEL} increased by 20\% but Rate is not changing almost \iff$

remark on use of official PU event samples which are produced w/o Elastic process (ES):

one should remember that if you want to estimate the PU contamination to your Signal one have to impose 25 interaction instead of 32 for $L=10^{34}$ because of negligible contribution of ES to the rate, but 20% contribution to σ

- Realistic estimation was obtained with use of FastSimulation and ProtonTaggerFilter:
 - thanks to Patrick Janot and Florian Beaudette for providing the new PileUpProducer module and Dimitry Zaborov for the timely changes of ProtonTaggerFilter
 - with use of acceptance tables of ProtonTaggerFilter in FastSimulation: $\epsilon_{fp420} = N_{fp420}/N_{tot} = 106/10000 = 0.0106, \ (1.06\%), \ \text{which is differ from} \ 0.76\% \ \text{obtained in use}$ of full sumulation \Longrightarrow coming because of difference in detector position: it was taken into account in evaluation of bkg particle numbers
 - simulation with 32 pile up interaction in the same event lead to the result: $p_1'' = 0.204$, $p_2'' = 0.042$, $p_3'' = 0.004$, $p_4'' = 0.0005$

in use of 0.84% instead 0.76% the row with numbers is the following:

P1=22.5, P2=4.6, P3=0.44, P4=0.06, ...

2000 events of ExHuMe: gg->H(120)->bbar are generated

only for 759 events the proton fly in +FP420 detector acceptance {losses are because of detector geometry position and dimensions and proton transport(see plot for momentum)}

MI:33/412-> 8%; Eff.of tr.rec.: 384/412-> 93.2%

MinBias response in detector

10 K ev.

for L=10^{34} sm-2 s-1 with 25 interactions/bx

~83%(2422/2930) of rec. MB events are in physical range of Signal

P': 6.8 - 7.0 TeV

