

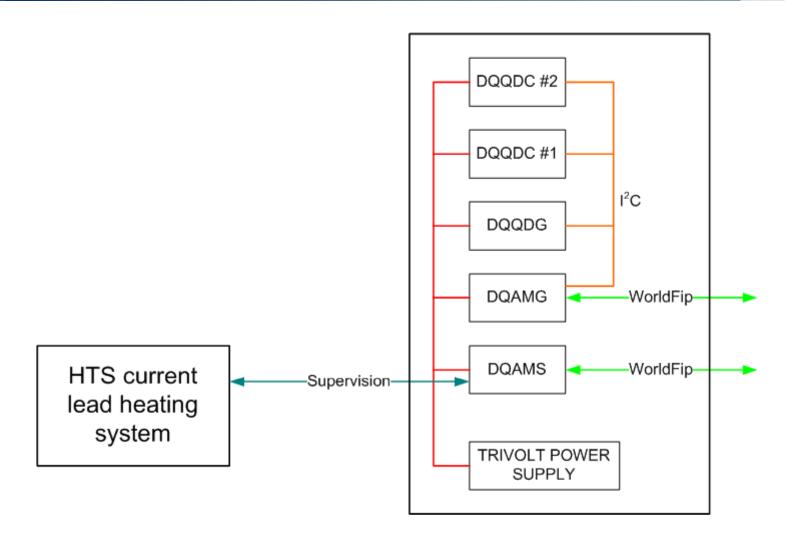
CNGS Radiation Test Campaign 2008 – Results from the QPS System

R .Denz AT-MEI-PE

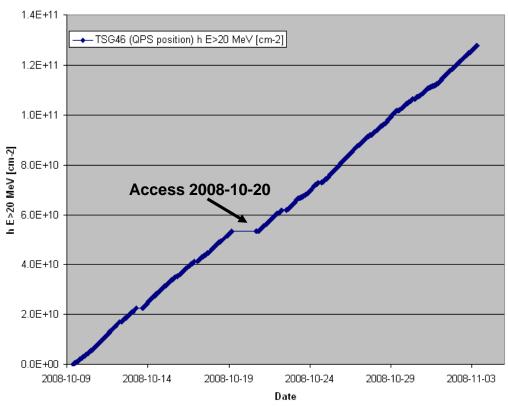
Radiation Test Campaign 2008 –AT-MEI-SD

- → AT-MEI-SD equipment (A. Ballarino, A. Gharib)
 - Solid state relays used for the HTS current lead heating system
 - Devices installed in all RR, UJ and UA
 - 2 different types under test
 - Both failed after some days of operation in CNGS
 - Detailed analysis still to be done
 - Further proceeding to be discussed with equipment owner
 - Development of radiation tolerant device feasible

Radiation Test Campaign 2008 – AT-MEI-PE


- Equipment of the LHC quench protection and energy extraction systems
 - Quench detectors for current leads and corrector magnet circuits
 - Data acquisition systems
 - Supervision of quench detection systems
 - Supervision of energy extraction systems
 - Systems currently installed in RR, UJ and UA
 - New requirements after September 19th some of these equipment types will be installed in the LHC tunnel as well (mid dipole position)
 - Systems are partly hardened and critical components have been previously tested at CERN and at PSI
 - e.g. fieldbus couplers, power supplies, DC-DC converters

Radiation Test Campaign 2008 – Test Setup TSG46



Radiation Test Campaign 2008 – TSG46 Position

Hadron target figures per nominal year (see presentation by M. Maury last meeting):

RR73/77: 108 cm-2

Arc dipole: 109 - 1010 cm -2

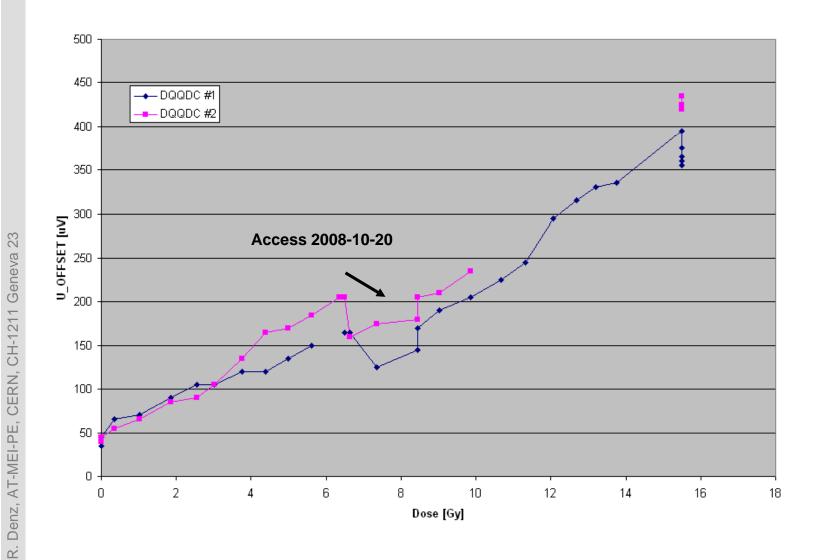
- → Irradiation test position TSG46 (RadMon data → T. Wijnands)
 - Total dose: 15.5 Gy
 - Neutron fluence (equiv. 1 MeV): 1.0 x 10¹¹ cm⁻²
 - Hadron fluence (E > 20 MeV): $1.3 \times 10^{11} \text{ cm}^{-2}$

Radiation Test Campaign 2008 – Results I

- → Hardware still alive → confirms previous radiation tests
 - Hardened power supplies, qualified DC-DC converters ...
 - Power cycle sufficient to re-start stalled devices properly
- → Fieldbus link (WorldFip MicroFip chip) confirms radiation tolerance shown in previous tests
- → Many soft errors in local communication (I²CTM bus)
 - Auto-recovery of stalled devices observed
 - DQQDG devices more susceptible than DQQDC devices
 - Possible firmware update to be studied
 - Further testing will be required (@ CERN and abroad)
- Input stage offset voltage drift of DQQDC devices observed
 - Drift to slow to be an issue for operation of the device
 - Partial recovery after radiation stop observed

Radiation Test Campaign 2008 – Results II

→ Periods with stable communication observed:


Device	Period	Dose [Gy]	Neutrons 1 MeV [cm-2]	Hadrons E > 20 MeV [cm-2]
DQQDG		0.20	1.30E+09	1.61E+09
	П	0.99	6.57E+09	8.12E+09
DQQDC #1	1	5.58	3.73E+10	4.60E+10
	П	0.73	4.90E+09	6.06E+09
	III	7.47	4.99E+10	6.17E+10
DQQDC #2	1	0.20	1.31E+09	1.62E+09
	П	4.96	3.31E+10	4.10E+10
	Ш	0.49	3.26E+09	4.03E+09
	IV	3.78	2.53E+10	3.12E+10

Radiation Test Campaign 2008 – AT-MEI-PE & AT-MEI-SD 1st results

→ Input offset voltage drift of DQQDC devices:

Conclusions

- Radiation tolerance exhibited by QPS devices installed in RR73 and RR73 sufficient for LHC operation with nominal beam
 - Enhanced shielding of RR73 and RR77 in place
 - Remote power cycle option to be added
- Radiation tolerance of devices to be installed under the mid dipole most probably sufficient
 - New devices within the framework of QPS upgrade
 - Not all systems tested yet
- → No hardware failure of QPS devices observed
- → Previously tested devices confirm radiation tolerance
- → Further testing @ CERN and abroad (e.g. PSI) to be foreseen
 - This years tests didn't cover all aspects of operation
 - New firmware implementations to be tested
 - Some new devices to be submitted to test