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Motivation
e Why computing HH production via gluon fusion at NNLO+NNLL in the EFT?

® Gluon fusion is the main HH production channel

® NLO corrections in the EFT are large
K factor close to 2
Large theoretical uncertainties

e \We need to improve both precision and accuracy of the prediction
Finite top mass effects at NLO (Eleni-Marco's talk)
NNLO (and NNLL) in the EFT <=
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Calculation in the EFT

e Calculation is much simpler! Loop induced in the full theory, tree level in the EFT
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e Even more, the vertices Loog < G WGP Hjv  Lygun x G GH (H/v)?
have the same structure!
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e We split the calculation:  Q* =640
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® \We obtained the NNLO cross section
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Threshold Resummation

® All-order summation of threshold enhanced contributions

Higgs pair invariant mass
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® Resummation is performed in Mellin space

® Threshold enhanced contributions: (ln N)k

® Originated by soft gluon emissions

e Resummation formula:

G(res)

/ a9,

Partonic cross section
(in Mellin space)

Sudakov factor
Exponentiates the
large log corrections

= AN X ng —+ O(l/N)

SN

Constant contributions



Threshold Resummation

® Sudakov factor:
Known (same as for single Higgs prod)
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Threshold Resummation

® Inverse Mellin transform performed numerically

e Matching with the FO
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Resummed contributions starting at O(OPS)
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® Resummed contributions should account for the dominant effect of the
uncalculated missing higher orders

r

e Relatively large invariant mass Corrections dominated by

threshold contributions

e Explicitly checked up to NNLO computing the soft-virtual approximation
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Numerical results for the LHC

® HH invariant mass distribution XS

® Bands » Scale uncertainty Here NNLL means
NNLL+NNLO, etc

® Central scale: HH invariant mass Q
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e Overlap only between NLO (NLL) and NNLO (NNLL)

® Resummed contributions » increase of the cross section

® Uncertainty reduction from NNLO to NNLL

® Shape: very small differences between FO and resummed distributions



e NNLL/NNLO ratio vs. HH invariant mass
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e NNLL always larger than NNLO, ratio is almost linear in Q
® Ratio increases for larger invariant masses ——» Closer to partonic threshold

® |arger collider energies —*® Smaller resummation effects (further from threshold)



® Total cross section

50
14TeV, uo=Q
Scale unc.
reduction at NNLL
40 I , S | (From £8.5% to £5.5%)
1
\ Large overlap between
0 / | NLL and NNLL
2
e '
o) o
Z 30+ A -
b5
2
: 0@"}
20 \“/v ? :
L . ,
oL mNL a4 NNL

10 | ]



® Total cross section
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Top mass effects

e |s the EFT calculation reliable?
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e Should be more reliable to compute the QCD corrections

® Corrections are dominated by ® Usual procedure: compute the
initial state soft radiation, not corrections in the EFT and
sensitive to the vertex structure normalize by the exact LO

® First step: validate it at NLO

_ Current estimations:
Exact NLO not available > finite top mass
effects of O(10%)




Conclusions

e \We performed the NNLL threshold resummation for the Higgs pair production cross
section in the EFT

® We consistently matched the results with the NNLO calculation

e Resummed contributions result in an increase of the total XS

e [Effects are more sizable for the central scale Q, less for Q/2

® Further reduction of the scale uncertainty w.r.t. NNLO

e NNLL+NNLO results almost independent of the central scale choice

® [or fixed order calculations, central scale Q/2 seems the best choice
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Numerical results for the LHC

o = Q | NNLL (fb) scale unc. (%) PDF unc. (%) PDF+ag unc. (%)
7 TeV 7.61 +5.6 — 6.0 +3.3 +4.3
8 TeV 11.0 +5.5 — 6.0 +3.0 +4.0
13 TeV 37.3 +5.1 — 6.1 +2.1 +3.1
14 TeV 44.2 +5.2 —6.1 +2.0 +3.0
100 TeV 1712 +5.2 —6.2 +1.7 +2.6
o = Q/2 | NNLL (fb) scale unc. (%) PDF unc. (%) PDF+ag unc. (%)
7 TeV 7.72 +4.0 — 5.7 +3.4 +4.4
8 TeV 11.2 +4.1 — 5.7 +3.1 +4.0
13 TeV 38.0 +4.3 — 6.0 +2.1 +3.1
14 TeV 45.1 +4.4 — 6.0 +2.1 +3.0
100 TeV 1749 +5.1 —-6.6 +1.7 +2.7

e Calculated using the new PDF4LHC prescription

® \We used the PDF4LHC15 nnlo_mc sets (100 MC replicas).
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