Resonant Double Higgs Production in the Singlet Extended Standard Model

Ian Lewis SLAC National Accelerator Laboratory

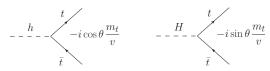
arXiv:1508.05397, S. Dawson IL

November 19, 2015 HH Subgroup Meeting

Singlet Scalar

- Add a Scalar that is a singlet under the SM group.
- Singlet scalar is theoretically motivated.
 - Dark Matter: Need to impose unbroken Z₂ symmetry on scalar, not case studied here.
 - Scalar singlet can help cause strong first order phase transition needed for electroweak baryogenesis Profumo et al PRD91 (2015) 035018; Curtin, Meade, Yu JHEP 11 (2014) 127;
 Espinosa, Konstandin, Riva NPB854 (2012) 592; No, Ramsey-Musolf PRD89 (2014) 095031; Profumo, Ramsey-Musolf, Shaughnessy JHEP08 (2007) 010; Kozaczuk JHEP10 (2015) 135
- Before EWSB, only renormalizable couplings are with Higgs doublet.
- After EWSB, generically can mix with SM Higgs boson.
 - Allows for production and decay through SM particles.

Z₂ Symmetric Case


- Introduce a real scalar *S* singlet under SM gauge group.
- Introduce Z_2 parity: $S \rightarrow -S$ and $SM \rightarrow SM$
- Start with potential:

$$V(\Phi, S) = -\mu^{2} \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi\right)^{2} + \frac{a_{2}}{2} \Phi^{\dagger} \Phi S^{2} - m^{2} S^{2} + \frac{b_{4}}{4} S^{4}$$

- Φ: SM Higgs doublet.
- Two mass eigenstates:
 - h with mass $m_h = 125$ GeV.
 - H with mass $M_H > m_h$.
- Other degrees of freedom:
 - Mixing angle between scalars: θ
 - $h = \cos \theta h_{SM} \sin \theta s$
 - $H = \sin \theta h_{SM} + \cos \theta s$
 - Vevs of the two scalars:
 - $\langle \Phi \rangle = v/\sqrt{2} = 174 \text{ GeV}$
 - \bullet $\langle S \rangle = x/\sqrt{2}$
 - $\tan \beta = v/x$

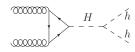
Relevant Feynman Rules

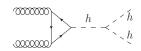
Couplings to fermions:

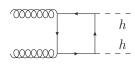
Couplings to gauge bosons:

$$- - \frac{h}{v} - 2 \frac{i \cos \theta}{v} \frac{2m_V^2}{v} g_{\mu\nu} \qquad - - \frac{H}{v} - 2 \frac{i \sin \theta}{v} \frac{2m_V^2}{v} g_{\mu\nu}$$

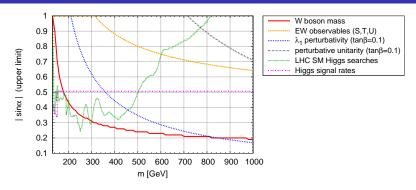
• Since couplings to gauge bosons and fermions proportional to SM couplings, heavy scalar produced through same mechanisms as SM-like scalar.

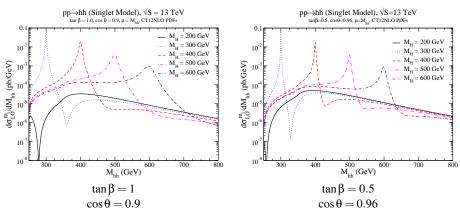

Relevant Feynman Rules


Trilinear couplings:

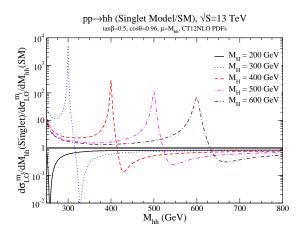

$$\lambda_{hhh} = \frac{3m_h^2}{v} \left(\cos^3\theta - \tan\beta \sin^3\theta\right)$$

$$\lambda_{Hhh} = \frac{m_h^2}{v} \sin 2\theta (\cos \theta + \sin \theta \tan \beta) \left(1 + \frac{M_H^2}{2m_h^2} \right)$$

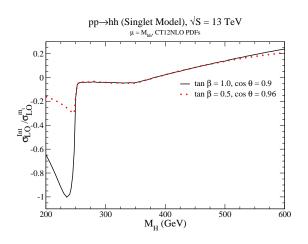

Double Higgs Production:


Current Limits on Scalar Singlet

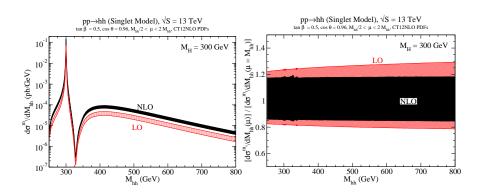
Stefaniak, Robens EPJ C75 (2015) 104


- Limits on $\tan\beta$ come from perturbativity $(\sin\theta=0.1)$ Stefaniak, Robens EPJ C75 (2015) 104:
 - for $M_H = 200 \text{ GeV } \tan \beta \lesssim 1.5$
 - for $M_H = 500 \text{ GeV } \tan \beta \lesssim 0.5$.
- See also Falkowski, Gross, Lebedev JHEP 1505 (2015) 057, Buttazzo, Sala, Tesi 1505.05488

Invariant Mass Distributions

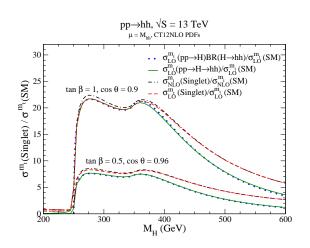

- Destructive interference occurs after the peak.
- Invariant mass distributions appear independent of M_H for $M_{hh} \ll M_H$.

Normalized Invariant Mass Distributions


• Ratio of singlet model invariant mass to SM invariant mass distribution.

Total Contribution From Interference

 Fractional contribution from interference of H-resonance with other diagrams to total cross section.


Singlet Model at NLO

- K-factor ~ 2 as in SM.
- Scale variation reduced at NLO, and largely independent of distribution.

10 / 12

Resonant Enhancement at $\sqrt{S} = 13 \text{ TeV}$

- Can achieve significant enhancement over SM rate.
- Enhancement to rate NLO very similar to enhancement at LO.

Ian Lewis (SLAC) Resonant Double Higgs Nov. 19, 2015

Conclusions

- Resonant enhancement possible in singlet Scalar extensions of SM.
 - Can get enhancements of O(10) above SM double Higgs rate.
 - Interference effects that can play a significant role in double Higgs rate for singlet scalars with masses above $\sim 400 \text{ GeV}$ and below $2m_h$.
 - NLO corrections increase rate by a factor of \sim 2, and decrease scale uncertainty from \sim 20 30% at LO to \sim 15% at NLO.