Electrostatic FEA of the Ground Plane Features

Bo Yu

Sept. 14, 2015

Folded Edge of the Ground Plane

180 kV @ 20 cm , corner radius 5 mm , gap between tiles: 1 cm , liquid above ground plane: 1cm

Corner of the Ground Plane

45 kV over $5 \mathrm{~cm}, 5 \mathrm{~mm}$ radius of curvature, 1 cm gap between tiles, gas pocket 1 cm above ground plane bottom surface. Max E at corner: $18 \mathrm{kV} / \mathrm{cm}$

Field in the gas pocket above the liquid

Gas pocket 1 cm above bottom of ground plane. Max E field <2kV/cm

Perforated Metal Sheet

- $0.125^{\prime \prime}$ holes at $0.188^{\prime \prime}$ center, staggered pattern, $0.05^{\prime \prime}$ thick (McMaster part \# 9232T181)
- 3 rounding radii: 0.005 ", $0.010^{\prime \prime}, 0.020$ "
- Max. E field at $\mathrm{R}=0.005^{\prime \prime}$ hole is $19 \mathrm{kV} / \mathrm{cm}$

Perforated Metal Sheet, Larger Holes

- 10 mm holes at 15 mm center, square pattern, 1 mm thick
- 4 rounding radii: $0.8 \mathrm{~mm}, 0.4 \mathrm{~mm}, 0.2 \mathrm{~mm}, 0.1 \mathrm{~mm}$
- Max. E field at $\mathrm{R}=0.1 \mathrm{~mm}$ hole is about $30 \mathrm{kV} / \mathrm{cm}$

Using a Wire Mesh as the Ground Plane

- 1/4" pitch, 0.047" diameter (McMaster 85385T28)
- $9 \mathrm{kV} / \mathrm{cm}$ on one side, Emax= $24 \mathrm{kV} / \mathrm{cm}$
- Other meshes with higher diameter to opening ratio (denser mesh) will have lower field

Overhang of the ground plane

- 2D simulation on 10.18.2015

No-overhang of the ground plane

20 cm FC to GP spacing Ground plane edge radius 5 mm
LAr 4cm above GP bottom
Cryostat vertical wall 40 cm from FC

Max LAr E: $23 \mathrm{kV} / \mathrm{cm}$ Max GAr E: ~ 3kV/cm

Flush with end wall FC

20 cm FC to GP spacing Ground plane edge radius 5 mm
LAr 4cm above GP bottom
Cryostat vertical wall 40 cm from FC
Max LAr E: $19 \mathrm{kV} / \mathrm{cm}$ Max GAr E: ~ $2 \mathrm{kV} / \mathrm{cm}$

10 cm overhang of the ground plane

20 cm FC to GP spacing Ground plane edge radius 5 mm
LAr 4cm above GP bottom
Cryostat vertical wall 40 cm from FC
Max LAr E: $13 \mathrm{kV} / \mathrm{cm}$
Max GAr E: ~ $1 \mathrm{kV} / \mathrm{cm}$

20 cm overhang of the ground plane

20 cm FC to GP spacing
Ground plane edge
radius 1 cm
LAr 4cm above GP
bottom
Cryostat vertical wall 40 cm from FC
Max LAr E: $13 \mathrm{kV} / \mathrm{cm}$
Max GAr E: < $1 \mathrm{kV} / \mathrm{cm}$

No overhang, but with a pipe

Conclusions

- Ground plane without overhang has $23 \mathrm{kV} / \mathrm{cm}$ E field at the 0.5 cm rounded bottom edge of the ground plane.
- A $10-20 \mathrm{~cm}$ overhang reduces the E field under the edge of the ground plane by about a factor of 2.
- This overhang is only needed in the cathode half of the field cage.

