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What do general-purpose Monte Carlo generators do?
I An “event“ is a list of particles (pions, protons, ...) with their

momenta.
I The MCs generate events.
I The probability to generate an event is proportional to the

(approximate!) cross section for such an event.
I Calculate Everything ∼ solve QCD → requires compromise!
I Improve lowest-order perturbation theory, by including the ”most

significant“ corrections → complete events (can evaluate any
observable you want)

The Workhorses: What are the Differences?

All offer convenient frameworks for LHC physics studies, but with slightly different

emphasis:
PYTHIA: Successor to JETSET (begun in 1978). Originated in
hadronization studies: Lund String.
HERWIG: Successor to EARWIG (begun in 1984). Originated in
coherence studies: angular ordering parton shower. Cluster model.
SHERPA: Begun in 2000. Originated in ”matching” of matrix elements
to showers: CKKW.
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Basics of Monte Carlo Generators

taken from Stefan Gieseke c©

The general approach is the same in different programs but the models
and approximations used are different.
In this talk I will focus on NLO matrix element + Parton Shower
matching.
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Fixed order calculations in QCD

General structure of NLO cross sections:

dσ =
[
B + V (αs) + C (αs)

]
dφB + R(αs) dφBdφ1

I B, R, V - Born, real and virtual part

I C - collinear subtraction counterterm (for initial state radiation case)

Each part: V , C and
∫
Rdφ1 is separately divergent (soft and collinear).

Divergences cancel in the sum.

Calculation possible e.g. by means of subtraction procedure

dσ =
[
B + V (αs) +

∫
1

A(αs)dφ1 + C (αs)
]
dφB +∫

1

[
R(αs)− A(αs)

]
dφ1dφB ,

where A ' R, such that it reproduces collinear and soft singularities.

I Good for inclusive observables or distributions at high-pT .
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Parton shower
In the collinear region, fixed order calculation becomes unreliable because
each αn

s is accompanied by a large, logarithmic coefficient, lnn, and

(αs ln)n ∼ 1 for all n .

These terms must be summed to all orders and this is what the Parton
Shower (PS) is aiming at. In the collinear limit

dσn+1 ' dσn
αs(q2)

2π

dq2

q2
P(z)dz .

This can be iterated and used to resum all leading log contributions.
In particular, non-emission probability (Sudakov form factor) is given by

∆(q1, q2) = exp

[
−
∫ q2

q1

αs(q2)

2π

dq2

q2

∫ 1

z0

P(z) dz

]
.

In Monte Carlo event generators, the scale of ith emission, qi , is found by
solving

∆(qi−1, qi ) = Ri ,

where Ri ∈ [0, 1] is a random number and qi−1 is a scale of previous
emission.
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Parton shower and NLO

Figure from P. Nason and B. Webber [arxiv:1202.1251]
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Motivation

I will talk about a method for NLO+PS matching applied to
Drell-Yan process.

Key ingredients:

I new factorization scheme leading to new MC PDFs

I NLO correction applied to PS via reweighting of MC events

There are two well established methods MC@NLO and POWHEG...

I Why would you like another method of NLO+PS matching?

I The method is extremely simple.
I No negative weight events.
I In angular ordered PS - no need for a truncated shower.
I Simple at NLO ⇒ you may hope that pushing the method to

NNLO+NLO PS should be possible.
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Drell-Yan process

Z
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Drell-Yan process
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s

Sudakov variables:

α =
2k · pB√

s
=

2k+

√
s

β =
2k · pF√

s
=

2k−
√
s

z = 1− α− β
k2

T = sαβ
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Basic idea of the MC scheme

DY cross section at NLO in collinear MS factorization for the qq̄ channel:

σ1
DY − σB

DY = σB
DY DMS

1 (x1, µ
2)⊗ αs

2π
CMS

q (z)⊗ DMS
2 (x2, µ

2) ,

where

CMS
q (z) = CF

[
4 (1+z2)

(
ln(1− z)

1− z

)
+

−2
1 + z2

1− z
ln z+ δ(1−z)

(
2

3
π2 − 8

)]
.

All solutions for NLO + PS matching which use MS PDFs, need to

implement terms of the type 4 (1 + z2)
(

ln(1−z)
1−z

)
+

that are technical

artefacts of MS scheme.

The implementation is not easy since those terms correspond to the
collinear limit but Monte Carlo lives in 4 dimensions and not in the phase
space restricted by δ(k2

T ).
The idea behind the MC scheme is to absorb those terms to PDF.
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The KrkNLO method
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The KrkNLO method

Two essential parts

1. Change the factorization scheme from MS to MC

I produce new MC PDFs

I differences at LO

I universality: recovering MS NLO result

2. Reweight parton shower

I correct hardest emission by ’real’ weight

I upgrade the cross section/distributions to NLO by multiplicative,
constant ’soft+virtual’ weight
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KRK method [Jadach, Kusina, P laczek, Skrzypek & S lawińska ’13]

1. Take a parton shower that covers the (α, β) phase space completely
(no gaps, no overlaps) and produces emissions according to approx.
real matrix element K .

2. Upgrade the real emissions to exact ME R by reweighting the PS
events by WR = R/K .

3. We define the coefficion function CR
2 (z) =

∫
(R − K ). To avoid

unphysical artifacts of MS.

4. Transform PDF for MS scheme to this new physical MC
factorization scheme.

5. As a result the virtual+soft correction, ∆S+V , is just a constant
now. Multiply the whole result by 1 +∆S+V to achieve complete
NLO accuracy.

This has been shown to reproduce exactly the NLO result of fixed order
collinear factorization, for the case of simplistic PS by means of analytical
integration.
[S. Jadach at al. Phys.Rev. D87]

Could we implement the method in a popular, general purpose MC?
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1. Take a PS that covers the (α, β) phase space

Herwig 7 (Dipole Shower)

The evolution variable:
q2 = k2

T = αβ s.

Sherpa 2.0.0

The evolution variable:
q2 = (α + β)β s.
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1. Take a PS that covers the (α, β) phase space
↪→ We used Sherpa 2.0.0 implementation of the Catani-Seymour (CS) dipole shower.

Phase space measure of emitted gluon

dα

α

dβ

β
=

dαdβ

β(α + β)
+

dαdβ

α(α + β)

I The evolution variable:

q2
F

= s(α + β)β, q2
B

= s(α + β)α ,

hence
dαdβ

αβ
=

dq2
F

q2
F

dz

1− z
+

dq2
B

q2
B

dz

1− z
.

I The CS shower covers all space of (α, β).

α + β ≤ 1 ⇒ z ≥ 0 and q2
F ,B
≤ s

α, β > 0 ⇒ (1− z)2 > q2
F
/s or (1− z)2 > q2

B
/s
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2. Upgrade the real emissions to exact ME by reweighting.
The hardest real emission is upgraded to ME by reweighting:

WR = R/K

Where the kernel K is just a CS dipole written in terms of shower’s
internal variables multiplied by the ratio of PDFs due to backward
evolution. The “Sudakov” form factor for he CS shower

S(Q2, Λ2, x) =

Q2∫
Λ2

dq2

q2

zmax(q2)∫
zmin(q2)

dz K (q2, z , x) ,

Real part:

W qq̄
R (α, β) = 1− 2αβ

1 + (1− α− β)2

W qg
R (α, β) = 1 +

α(2− α− 2β)

1 + 2 (1− α− β)(α + β)

Note:
Very simple weight dependent only on the kinematics α, β. One can
compute it on the fly, inside an MC, or outside, using information from
event record. 21 / 57



3. The coefficient function C2(z)
↪→ It turns out that coefficient functions of the CS shower equal to those from

the MC scheme of Jadach et al. arXiv:1103.5015. Hence, CS ≡ MC.

The C2(z) function:

CMC
2 (z)

∣∣∣
real

=

∫
(R − K )

I For the qq̄ channel:

CMC
2q (z)

∣∣∣
real

=
αs

2π
CF [−2(1− z)]

I For the qg channel:

CMC
2g (z)

∣∣∣
real

=
αs

2π
TR

1

2
(1− z)(1 + 3z)

I Quark and anti-quark PDFs are redefined by:

I subtracting CMC
2q (z) and CMC

2g (z) from MS PDFs

I absorbing all z-dependent terms from MS coefficient functions
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Simple form of
the coefficient
functions with

no singular
terms!

I Quark and anti-quark PDFs are redefined by:

I subtracting CMC
2q (z) and CMC

2g (z) from MS PDFs

I absorbing all z-dependent terms from MS coefficient functions
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4. Redefine PDFs: MC PDF

Recipe: Make convolution of the LO PDF in MS (q and q̄) with the
difference of collinear counterterms in MS and MC schemes:

f MC
q(q̄) (x ,Q2) = f MS

q(q̄)(x ,Q
2) +∫ 1

x

dz

z
f MS
q(q̄)

(x
z
,Q2

)
∆C2q(z) +

∫ 1

x

dz

z
f MS
g

(x
z
,Q2

)
∆C2g (z)

where

∆C2q(z) = CMS
2q (z)− CMC

2q (z) =
αs

2π
CF

[
1 + z2

1− z
ln

(1− z)2

z
+ 1− z

]
+

∆C2g (z) = CMS
2g (z)− CMC

2g (z) =
αs

2π
TR

{[
z2 + (1− z)2

]
ln

(1− z)2

z
+ 2z(1− z)

}

The formula is valid for any process up to O
(
α2

s

)
.

The gluon PDF for DY: f MC
g (x ,Q2) = f MS

g (x ,Q2)
Notes:

I The MC scheme has been validated by reproducing the scheme-independent relations

between DY and DIS. [S. Jadach at al. Phys.Rev. D87]
I LHAPDF grid (easy to use by all PS MC) for the MC PDF.

(As a source we used MSTW2008lo, other MS PDF possible).
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MC PDFs
I Ratios with respect to standard MS PDFs for light quarks

(Q2 = 100 GeV).

25 / 57



MS vs MC at LO

I +5% effect at central rapidities in qq̄ and -20% for both channels

I pronounced difference at large y coming from the x ∼ 1 region

x1,2 =
mZ√
s
e±yZ
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MCFM MS vs MCFM modified MC scheme at NLO

Fixed order cross-check
(using modified MCFM: using MC PDF and MC C2 )

σMS
tot = fq ⊗ (1 + αs C

MS
q )⊗ fq̄

σMC
tot = (fq + αs∆fq)⊗ (1 + αs C

MC
q )⊗ (fq̄ + αs∆fq̄)

= fq ⊗ fq̄ + αs

(
∆fq ⊗ fq̄ +∆fq̄ ⊗ fq + CMC

q ⊗ fq ⊗ fq̄
)

+O(α2
s ) +O(α3

s )

At O(αs):

CMS
q ⊗ fq ⊗ fq̄ = ∆fq ⊗ fq̄ +∆fq̄ ⊗ fq + CMC

q ⊗ fq ⊗ fq̄

Drell-Yan, qq̄ channel, αs = αs(mZ ), MCFM, MSTW2008LO

(336.36± 0.09) pb = 25.79 pb + 25.79 pb + 284.77 pb︸ ︷︷ ︸
(336.35± 0.09) pb

I Final result is scheme independent up to O(αs).

I Terms O(α2
s ) ' 16 pb, for this example; O(α3

s ) ' 0.2 pb.

↪→ Identical validation performed with both qq̄ and qg channels.
27 / 57



5. Virtual+soft correction, ∆S+V

Virtual + soft:

W qq̄
V +S =

αs

2π
CF

[
4

3
π2 − 5

2

]
W qg

V +S = 0

Notes:

I Simple, kinematics independent!

I No need to generate strictly collinear contributions (like dΣc± terms
in MC@NLO).
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Upgrading to NLO: the hardest emission

Z

σLO = σB ⊗ D⊕(Q2, x⊕)⊗ D	(Q2, x	)
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Upgrading to NLO: the hardest emission
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⊗
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S⊕(Q2, q2

1)K⊕(q2
1 , z1)S	(Q2, q2

1) +S	(Q2, q2
1)K	(q2
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}
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+ S	(Q2, q2
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1 , z1)⊗ S⊕(Q2, q2
1)

⊗
{
S⊕(q2

2 , q
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2 , q
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2 , q
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Upgrading to NLO: the hardest emission
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Upgrading to NLO: the hardest emission

Steps:

1. Run LO PS1 (Herwig/Sherpa) using MC PDF (via LHAPDF
interface)

2. Get and an event record (for example in the HepMC format).

3. Book histograms (for example using Rivet) with MC weight
calculated from the event record (and information on αs).

It is almost as fast as LO+PS calculation!

1Cover full Phase Space.
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Results
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NLO+PS results

KrkNLO

I Virtual: µ2 = µ2
F = µ2

R = m2
Z

I Real: two choices
I µ2 = m2

Z

I µ2 = q2

↪→ differences formally beyond NLO, indicative of missing higher orders

Compared to:

I MCFM: pure NLO, µ2 = m2
Z

I MC@NLO: from Sherpa, with the evolution variable q2

I POWHEG: from Herwig 7, with the evolution variable k2
T
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Matched results: total cross section

qq̄ channel

σqq̄
tot [pb]

MCFM 1273.4± 0.1
MC@NLO 1273.4± 0.1
POWHEG 1272.1± 0.7
KrkNLO αs(q2) 1282.6± 0.2
KrkNLO αs(M2

Z ) 1285.3± 0.2

I sub-percent differences from
beyond-NLO terms in the
KrkNLO result (MC PDFs,
mixed real-virtual)

I negligible difference between
fixed and running coupling

qq̄ + qg channels

σqq̄+qg
tot [pb]

MCFM 1086.5± 0.1
MC@NLO 1086.5± 0.1
POWHEG 1084.2± 0.6
KrkNLO αs(q2) 1045.4± 0.1
KrkNLO αs(M2

Z ) 1039.0± 0.1

I beyond-NLO terms reach up to
4% in the KrkNLO result
↪→ resulting from large gluon

luminosity leading to f MC/f MS < 1

I small differences between fixed
and running coupling choices
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Matched results: qq̄, 1st emission
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I Reproduction of yZ distribution at NLO.

I Agreement of KrkNLO αs (q2) with MC@NLO at low pT ,Z : PS domination

I KrkNLO results above MC@NLO and MCFM at higher pT ,Z : O
(
α2

s

)
terms
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Matched results: qq̄, full PS

10−3

10−2

10−1

100

101

102

103

d
σ
/d

p
T
,Z

[p
b
/G

eV
]

8 TeV: qq̄ channel (full parton shower)

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

ra
ti
o
to

M
C
@
N
L
O

pT,Z [GeV]

MC@NLO

KrkNLO αs(q
2)

KrkNLO αs(M
2

Z)

100

120

140

160

180

200

d
σ
/d

y Z
[p
b
]

8 TeV: qq̄ channel (full parton shower)

0.9

1.0

1.1

-3 -2 -1 0 1 2 3
ra
ti
o
to

M
C
@
N
L
O

yZ

MC@NLO

KrkNLO αs(q
2)

KrkNLO αs(M
2

Z
)

I Low pT ,Z part of the spectrum changes but KrkNLO αs (q2) with
MC@NLO agree there because of shower domination

I KrkNLO results above pure NLO at high pT ,Z : admixture of NNLO terms

I Diffs between two KrkNLO result at high pT ,Z : running coupling effects
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Matched results: botch channels, 1st emission
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I MCFM band is an uncertainty estimate obtained by independent variation
of µF and µR by a factor 1/2 and 2

I Moderate differences between KrkNLO αs (q2) and MC@NLO in the
region below MZ and between KrkNLO αs (M2

Z ) and MC@NLO in the
region above MZ
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Matched results: both channels, full PS
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I KrkNLO αs (q2) stays overall very close to MC@NLO

I KrkNLO αs (q2) almost coincides with POWHEG pT ,Z distributions
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Comparison with fixed order NNLO results (DYNNLO)

I DYNNLO green band is an uncertainty estimate obtained by independent
variation of µF and µR by a factor 1/2 and 2

I KrkNLO αs (min(q2,MZ )) and NNLO results show the same trends (left).

I Similar comparisons for POWHEG and MCatNLO are also shown (right).
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Near Future

KrkNLO for Higgs-boson production in gluon–gluon fusion

As expected we get simple weights:

1. g + g −→ H + g :

W gg
R (α, β) =

1 + z4 + α4 + β4

1 + z4 + (1− z)4
(2)

2. g + q −→ H + q:

W gq
R (α, β) =

1 + β2

1 + (1− z)2
(3)

and for the process with exchanged initial-state partons we have:
W qg

R (α, β) = W gq
R (β, α).
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Near Future

KrkNLO for Higgs-boson production in gluon–gluon fusion

Full definition (including gluon) PDFs in the MC and the MS
factorisation schemes:

gMC(x,Q2) = gMS(x,Q2) +

∫ 1

x

dz

z
gMS

(
x

z
,Q2

)
∆C2gg (z) +

∫ 1

x

dz

z
qMS

(
x

z
,Q2

)
∆C2gq(z),

A similar relation for the quark (antiquark) PDFs reads

qMC(x,Q2) = qMS(x,Q2) +

∫ 1

x

dz

z
qMS

(
x

z
,Q2

)
∆C2qq̄(z) +

∫ 1

x

dz

z
gMS

(
x

z
,Q2

)
∆C2qg (z),

I In the format of LHAPDF6 obtained from different MS bar PDF
sets.
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Near Future

Implementation of KrkNLO in Herwig 7
“Herwig 7.0 / Herwig++ 3.0 Release Note”, arXiv:1512.01178
J. Bellm, S. Gieseke, D. Grellscheid, S Platzer, M. Rauch, Ch. Reuschle, P. Richardson, P. Schichtel, M. H. Seymour, AS, A Wilcock,
N. Fischer, M. A. Harrendorf, G. Nail, A. Papaefstathiou, D. Rauch

I NLO matched to parton showers as default for the hard process.
I Two showers: Angular-ordered and dipole shower.
I Two matching algorithms: Subtractive (MC@NLO-type) and

multiplicative (Powheg-type) matching.
I Vastly improved documentation, usage and installation + new tunes.
I and much more ...
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Conclusions
I I have discussed a method of NLO+PS matching:

I Real emissions are corrected by simple reweighting.

I Collinear terms are dealt with by putting them to PDFs. This
amounts to change of factorization scheme from MS to MC.

I Virtual correction is just a constant and does not depend on Born
kinematics.

I The method has been implemented on top of Catani-Seymour
shower.

I It has been validated against fixed order NLO for Drell-Yan process.

I First comparisons to MC@NLO and POWHEG.

I KrkNLO αs(min(q2,MZ )) and NNLO results show the same trends.

Near future: Higgs production, full definition of the MC pdf in LHAPDF6
format, public version implemented in Herwig 7, diboson production,
correction of n emissions.
Next: work on extension of the method to NNLO+NLO PS.
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Thank you for the attention!



Origin of 4
ln(1−z)

1−z in MS

ln α

βln 

α =
 β

= 1−zα+β

T
k   =

µ
F

I Integration extends up
to a fixed kT = µF .

I For one PDF we get

2 ln(1−z)
1−z

I Combining two PDFs
leads to overcounting by

4 ln(1−z)
1−z
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Origin of 4
ln(1−z)

1−z in MS

PDF

PDF

ln α

βln 

α =
 β

= 1−zα+β

T
k   =

µ
F

I Integration extends up
to a fixed kT = µF .

I For one PDF we get

2 ln(1−z)
1−z

I Combining two PDFs
leads to overcounting by

4 ln(1−z)
1−z

Could we reorganize phase space integration to remove the oversubtrac-
tion?
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Alternative factorization scheme

ln α

βln 

α =
 β

= 1−zα+β

T
k   =

µ
F

I Integration in angle
rather than kT .

I No overcounting.

I This is equivalent to

saying that the 4 ln(1−z)
1−z

term gets absorbed into
PDFs.
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Alternative factorization scheme

ln α

βln 

α =
 β

= 1−zα+β

T
k   =

µ
F

I Integration in angle
rather than kT .

I No overcounting.

I This is equivalent to

saying that the 4 ln(1−z)
1−z

term gets absorbed into
PDFs.

Could the change of factorization scheme help us to simplify NLO+PS
matching?
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VS

More on ΔV+S virtual+soft correction

ΔV+S = DMS
DY (z)− 2CpsMC

ct (z)

where we use MS results, eq. (89) in Altarelli+Ellis+Martinelli (1979):

DMS
DY (z), = δ(1− z) + δ(1− z)

CF αs

π

„
1
3

π2 − 4
«

+

+ 2
CF αs

π

„
ŝ
µ2

«ε „
P̄(z)

1− z

«

+

„
1
ε

+ γE − ln 4π + [2 ln(1− z)− ln z]

«

and collinear counterterm of psMC (one gluon in psMC in d = 4 + 2ε):

CpsMC
ct (z) =

CF αs

π

Z

β<α

dαdβ

αβ

Z
dΩ1+2ε

„
sαβ

µ2
F

«ε

P̄(1− α, ε)δ1−z=α =

=
CF αs

π

„
P̄�(z, ε)

1− z

«

+

„
1
ε

+ γE − ln 4π + ln
s
µ2

F

«
,

P̄�(z, ε) = P̄(z) +
1
2

ε(1− z)2 + ε ln(1− z).

S. Jadach NLO Parton Shower Monte Carlo
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VS

NLO Monte Carlo weight
This is Yennie-Frautschi-Suura (YFS) style!

Once LO MC is re-designed, introduction of the complete NLO to hard
process part is done with help of simple positive MC weight:

W NLO
MC = 1 + ΔS+V +

X

j∈F

β̃1(ŝ, p̂F , p̂B; aj , zFj)

P̄(zFj) dσB(ŝ, θ̂)/dΩ
+

X

j∈B

β̃1(ŝ, p̂F , p̂B; aj , zBj)

P̄(zBj) dσB(ŝ, θ̂)/dΩ
,

where the IR/Col.-finite real emission part is

β̃1(p̂F , p̂B; q1, q2, k) =
h (1− α)2

2
dσB

dΩq
(ŝ, θF1) +

(1− β)2

2
dσB

dΩq
(ŝ, θB2)

i

− θα>β
1 + (1− α− β)2

2
dσB

dΩq
(ŝ, θ̂)− θα<β

1 + (1− α− β)2

2
dσB

dΩq
(ŝ, θ̂),

and the kinematics independent virtual+soft correction is

ΔV+S =
CF αs

π

„
1
3

π2 − 4
«

+
CF αs

π

1
2

Next slide more on ΔV+S .

S. Jadach NLO Parton Shower Monte Carlo
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Notation: CS parton shower

The “Sudakov” form factor

S(Q2, Λ2, x) =

Q2∫
Λ2

dq2

q2

zmax(q2)∫
zmin(q2)

dz K (q2, z , x) ,

where

K (q2, z , x) =
CFαs

2π

1 + z2

1− z

D(q2, x/z)/z

D(q2, x)
.

I z , q2 - internal variables of the shower

I D(q2, x) - parton distribution functions

The kernel K is just a CS dipole written in terms of shower’s internal
variables multiplied by the ratio of PDFs due to backward evolution.
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Convolution:

(f ⊗ g)(x) ≡
∫ 1

0
dx1

∫ 1

0
dx2 δ(x − x1x2) f (x1)f (x2). (4)

Eliminating x2 and delta function we obtain2

(f ⊗ g)(x) ≡
∫ 1

x

dx1

x1

f (x1)f (x/x1). (5)

C(z) = C̃(z) + {∆C(z)}+. (6)

[C ⊗ D1 ⊗ D2](x) = [C̃ ⊗ D1 ⊗ D2](x)

+
CFαs

π

[({ 1

2
∆C(z)

}
+
⊗ D1) ⊗ D2

]
(x) +

CFαs

π

[
D1 ⊗

({ 1

2
∆C(z)

}
+
⊗ D2

)]
(x)

(7)

Denoting

∆D(x) =
CFαs

π

[{ 1

2
∆C(z)

}
+
⊗ D

]
(x),

D̃(x) = D(x) + ∆D(x),

(8)

the above formula can be expressed at the NLO precision level (i.e. dropping NNLO terms) as follows:

[C ⊗ D1 ⊗ D2](x) = [C̃ ⊗ D1 ⊗ D2](x) + [∆D1 ⊗ D2](x) + [D1 ⊗∆D2](x)

= [C̃ ⊗ D̃1 ⊗ D̃2](x) + O(α2
s ).

(9)

2Note the importance of x/x1 < 1 condition when eliminating delta.
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