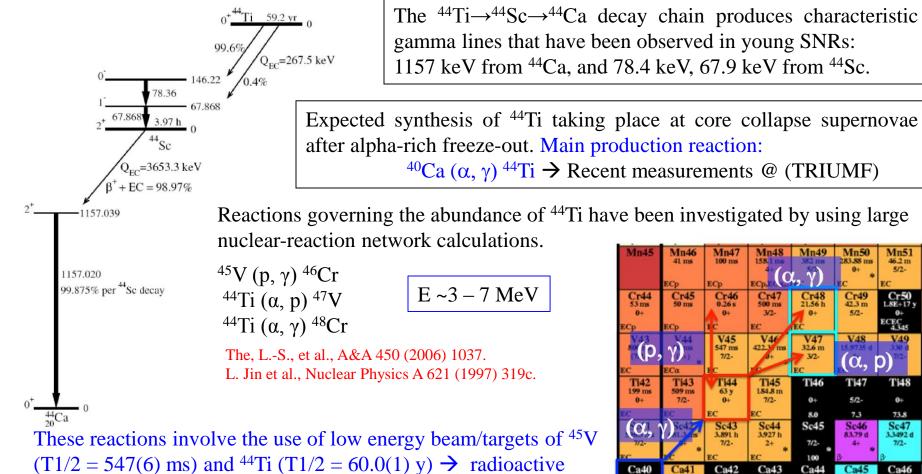
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee


Study of the beta delayed particle emission from ⁴⁸Mn and its relevance for explosive nucleosynthesis (P-445)

Spokespersons: I. Martel, O. Tengblad

Local contact: Miguel Madurga

Motivations

One of the open problems in galactic chemical evolution is the source of ⁴⁴Ca; the dominant production channel is believed to be ⁴⁴Ti nucleosynthesis at core collapse supernovae.

7/2-

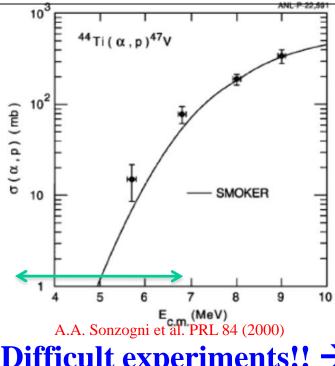
0.135

0.64

0+

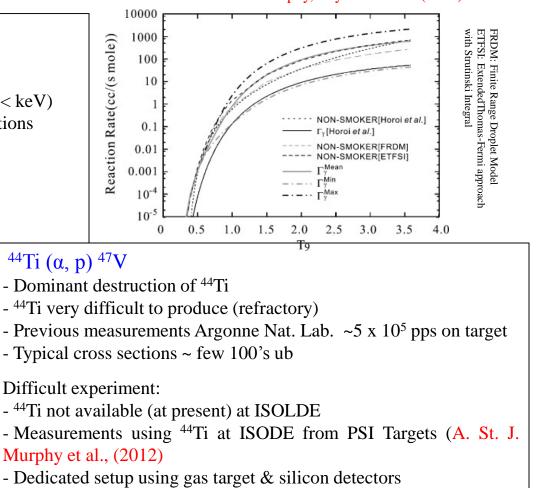
0.004

(T1/2 = 547(6) ms) and $^{44}\text{Ti} (T1/2 = 60.0(1) \text{ y}) \rightarrow \text{radioactive}$ beam facilities.


Previous studies

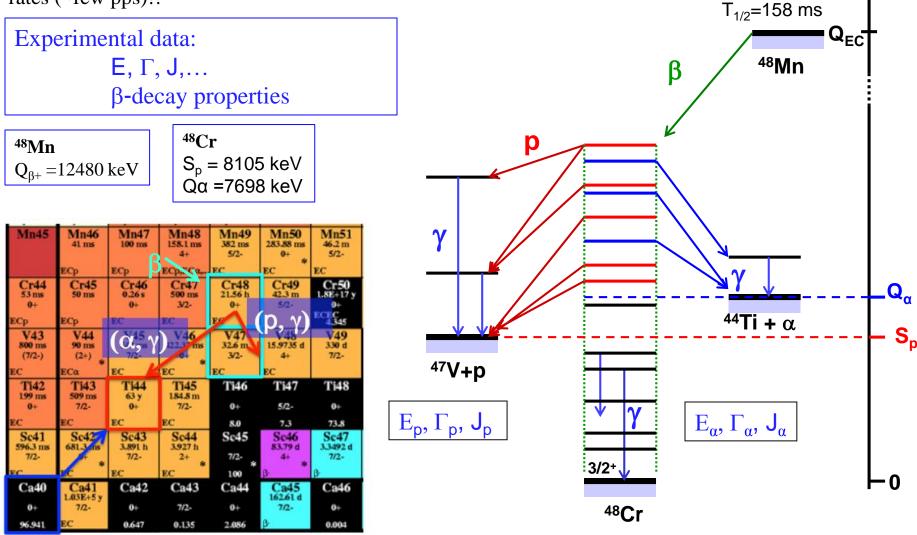
${}^{45}V(p,\gamma) \, {}^{46}Cr$

- dominates $(p, \gamma) (\gamma, p)$ equilibrium with ${}^{45}V$
- ⁴⁵V very difficult to produce (refractory)
- Dominated by very narrow proton resonances (<< keV)
- Seems to be well described by statistical calculations No experimental data so far


Difficult experiment:

- ⁴⁵V not available (at present) at ISOLDE
- Proposal for production of $^{45}\mathrm{V}$ at TRIUMF

Horoi, M. et al. Phys.Rev. C66 (2002) 015801


⁴⁴Ti (α, γ) ⁴⁸Cr \rightarrow Destruction of ⁴⁴Ti

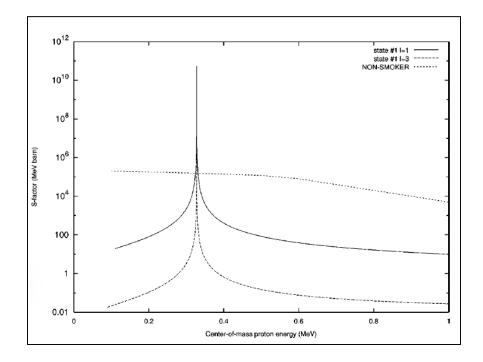
 \rightarrow No experimental data so far

Difficult experiments!! → **possibly at ISOLDE in near future?**

Different approach → Beta delayed proton emission from ⁴⁸Mn

Beta delayed particle emission \rightarrow a very good spectroscopic tool at low production rates (~few pps)!!

$(E_p, \Gamma_p, J_p) \& (E_\alpha, \Gamma_\alpha, J_\alpha)$ are the critical parameters needed to evaluate the reactions rates of the reactions ⁴⁴Ti (α, γ) ⁴⁸Cr and ⁴⁴Ti (α, p) ⁴⁷V


The astrophysical S factors (example \rightarrow (α ,p))

Thermonuclear reaction rates

$$S(E) = \pi \frac{(2J+1)}{(2j_t+1)(2j_p+1)} \times \frac{\Gamma_{\alpha} \Gamma_p}{(E-E_r)^2 + \Gamma^2/4} \exp(2\pi\eta) \qquad N_A \langle \sigma v \rangle = \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty S(E) \exp\left[-\frac{E}{kT} - \frac{b}{E^{1/2}}\right] dE$$

- J spin of the state in the compound nucleus
- J_t spin of the target nucleus
- j_p spin of the projectile
- $\hat{\Gamma}$ total decay width
- $\Gamma_{\alpha}, \Gamma_{p}$ –partial decay widths
- η- Sommerfeld parameter
- Er-level energy

Astrophysical S factor calculated using the single resonance formula as a function of proton center-of-mass energy.

Data analysis of particle decay to extract E, Γ , J

"Ideal analysis": Shell model in the continuum (Gamow Shell Model - GSM)

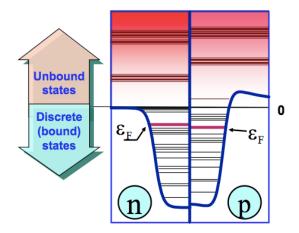
 \rightarrow Full shell model in the complex energy plane

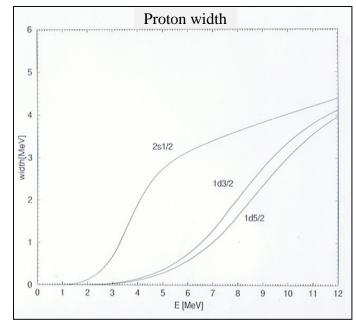
N. Michel, W. Nazarewicz, M. Oloszajzak and T. Vertse, J. Phys. G.: Nucl. Part. Phys. 36 (2009) 013101// Humblet and Rosenfeld, Nucl. Phys. 26, 529 (1961); T. Berggren, Nucl. Phys. A 109 (1968) 265; R. de la Madrid, Nucl. Phys. A812, 13 (2008)

"Simple analysis": Shell model WITH Gamow wave functions SM-G.

I. Martel et al., NPA(2001)424-436

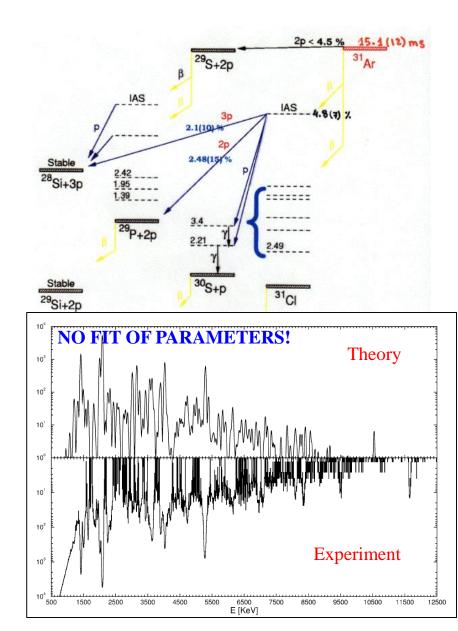
-Shell model to calculate energy levels, spectroscopic factors, and beta decay strenght

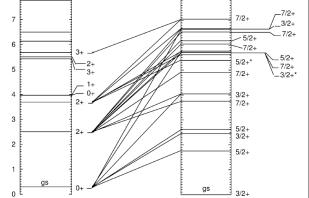

- Gamow-wave functions to evaluate particle decay widths


- Already tested in the analysis of 31Ar beta delayed particle emission

- Collaboration with A. Poves (Madrid)

Total width (r)


$$\Gamma$$
 (i; r; Ek) = Σ_{ii} |SPA(i; r, nlj)|² γ (nlj; Ek)


Gamow state calculation~ Woods-Saxon (a=0.65fm, r=1.27fm), select depth V0 to reproduce Ek, 31 Ar β -delayed proton emission

Shell model WITH Gamow wave functions SM-G

I. Martel et al., NPA(2001)424-436

8

J_{Cl}^{π}	$E_{\rm Cl}$	B(GT) (th)	J_{S}^{π}	$E_{\rm p}~({\rm exp})$	I_p (th)	<i>I</i> _p (exp)	Γ (th)
$5/2^+_1$	1753	0.053	0_{1}^{+}	1416(2)	27.1	34.0(3)	0.02
$3/2^{+}_{2}$	2443	0.243	0^{+}_{1}	2084(2)	100	100.0(6)	0.4
$5/2^{+}_{2}$	2618	0.004	0^{+}_{1}	2253(2)	1.6	4.0(3)	0.8
$7/2^{+}_{1}$	3752	0.004	2^{+}_{1}	1211(4)	1.1	1.7(5)	0.11
$3/2_3^+$	4045	0.028	0+	3634(3)	4.4	6.1(8)	9.8
			2^{+}_{1}	1504(2)	2.3	6.2(2)	5.1
$7/2^{+}_{2}$	4905	0.014	2^{+}_{1}	2327(4)	2.4	5.1(4)	1.7
$5/2^{+}_{3}$	5390	0.011	2^{+}_{2}	1643(2)	1.1	2.88(14)	3.4
$7/2^+_3$	5621	0.057	2_{1}^{+}	3020(3)	7.4	1.08(14)	3.1
$3/2_4^+$	5658	0.010	11	1643(2)	0.8	2.88(14)	3.8
5/24+	5767	0.360	0^{+}_{1}	5276(5)	11.5	17.6(3)	7.4
			2^{+}_{1}	3153(4)	12.2	0.44(10)	7.8
			2^{+}_{2}	2008(2)	20.9	10.0(2)	13.4
$7/2_4^+$	6047	0.022	2_{1}^{+}	3432(3)	2.1	0.89(11)	9.8
$5/2_{5}^{+}$	6180	0.047	2^{+}_{1}	3561(11)	4.5	3.6(8)	30.8
$7/2_{5}^{+}$	6533	0.044	2^{+}_{1}	3902(3)	3.4	2.22(14)	11.3
$3/2^{+}_{5}$	6640	0.023	0^{+}_{1}	6145(7)	0.5	0.51(12)	5.4
7/26+	6665	0.186	2_{1}^{+}	4030(3)	14.7	7.0(2)	4.6
				2881(3)	0.4	0.99(13)	0.13
$7/2^+_7$	7050	0.050	2^+_2 2^+_2 3^+_2	3249(4)	1.9	1.17(15)	2.6
			$3\hat{2}$	1300(13)	0.9	0.7(11)	1.3

Previous measurements on beta delayed proton emission from ⁴⁸Mn GSI (Darmstadt, Germany)

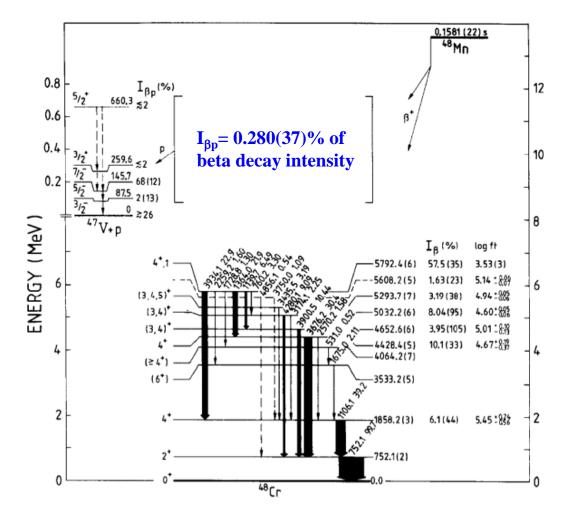
T. Sekine et al., Nucl. Phys. A467 (1987) 93 J. Szerypo et al., Nucl. Phys. A528 (1991) 203

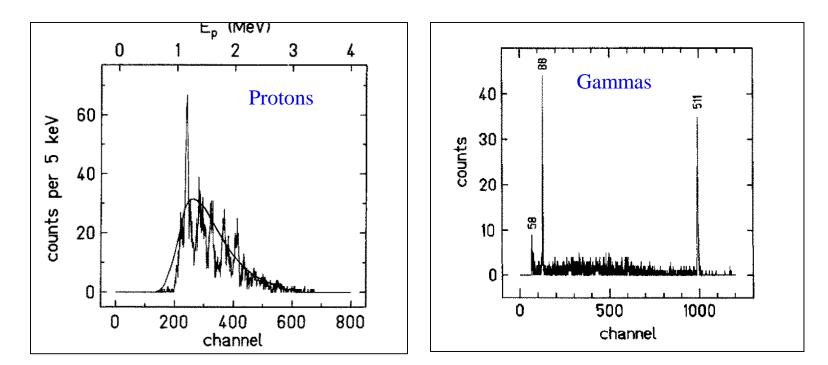
Beam time:

50 hours,, I=200-600 pps

Contaminants: 48Cr, 48V, 48Sc and 12F (Al-F)

Set-up:


2 x particle telescopes


- Efficiency of 4%

- E_{res} = 50 keV

- 2 x gamma detectors:
 - Efficiency of 4% (1.3 MeV)

UNILAC + GSI on-line mass separator ${}^{12}C({}^{40}Ca, p3n)$ reaction

Protons: expected bell-shaped overall structure

Ep ~1-3 MeV range → Structures @ 1.2, 1.4, 1.6, 1.8, 2.0, 2.2 MeV

00/

Coincidence with gamma rays:

$$\begin{array}{c} \sim 2\% \rightarrow 4^{7}V(660.3 \text{ KeV}) \\ \sim 2\% \rightarrow 4^{7}V(259.6 \text{ keV}) \\ 68(12)\% \rightarrow 4^{7}V(145.7 \text{ keV}) \\ 2(13)\% \rightarrow 4^{7}V(87.5 \text{ keV}) \\ \sim 26\% \rightarrow 4^{7}V(\text{gs}) \end{array}$$

 $\sqrt{7}$

 $I_{\beta\alpha} < 6.0 \text{ x } 10^{-4} \%$

Sekine et al. \rightarrow singles:1 event!

However, due to statistics, it was not possible to identify the initial and final levels in 48 Cr involved in the process. \rightarrow Main objective of the present proposal.

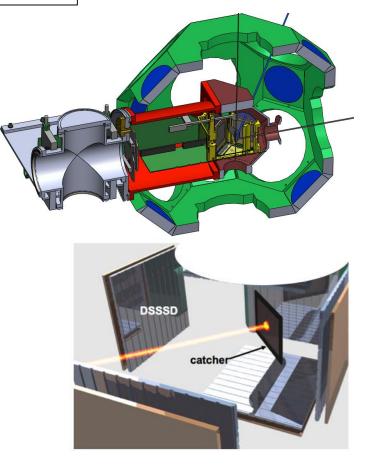
Main objectives of present proposal

Detailed study of ⁴⁸Mn beta delayed proton emission:

- Identify proton emitter levels in ⁴⁸Cr
- Identify alpha emitter levels (branching ratio limits)
- Extract proton widths, angular momentum (alpha width limits)

Dedicated experimental setup at the IDS

"Silicon-cube" device


- 5 **DSSSD** telescopes for protons/alphas \rightarrow high granularity
 - \rightarrow default detection efficiency ~46%
 - \rightarrow energy FWHM ~ 25 keV (low noise P.A.)
 - \rightarrow 40um and 1mm thickness
 - \rightarrow back-detectors for beta suppression
 - \rightarrow ions deposited on a thin **carbon catcher**

Germanium detectors

- 4 Clover detectors
- high resolution
- efficiency ~4% (1 MeV)

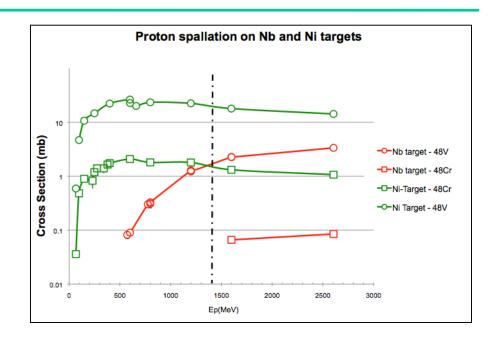
- closer geometry possible: particle/gamma (60% / 10%)

\rightarrow Cross section evaluation

Beam-time request

ISOLDE ⁴⁸Mn production (Nb target, 1.4 GeV) ~10 pps on target (Isolde Yields Data Base)

Beam request: 21 shifts


Assuming 46% efficiency (particles) & 4% efficiency (gammas)

Expected beta delayed proton yield: 8300 Expected proton-gamma coincidences: 330

Remark: For doing the proposed measurements, it would be very interesting to investigate a target test with a mixed Ni-Al composition.

Estimated gain in Yield by ~ 10 - 20

EXFOR: Experimental Nuclear Reaction Data. https://www-nds.iaea.org/exfor/

⁴⁸Mn collaboration

CERN – Huelva (Spain) – Madrid (Spain) – Warsaw (Poland) – Belfast (UK) – Leuven (Belgium) – Gradignan (France) – Lund (Sweden) – Mexico (Mexico) – Warsaw (Poland) – Aarhus (Denmark)

I. Martel^{1,2}, L. A. Acosta⁹, MJG. Borge^{1,3}, L. Barrón-Palos⁹, J. Cederkall¹¹, E. Chávez-Lomelí⁹, T. Davinson⁷, H.O.U. Fynbo¹⁰, M. Huyse⁵, A. Huerta Hernandez⁹, Z. Janas⁸, R. Kotak⁴, D. Kahl⁷, A. Korgul⁸, T. Kurtukian-Nieto⁶, S. Lonsdale⁷, C. Lederer⁷, C. Mazzocchi⁸, M. Madurga¹, G. Marquínez-Durán², A. St. Murphy⁷, A.K. Orduz², M. Pfutzner⁸, R. Raabe⁵, K. Riisager¹⁰, O. Tengblad³, P. Van Duppen⁵, H. De Witte⁵, P. J. Woods⁷

1 PH Department, CERN, CH-1211 Geneva 23, Switzerland

2 University of Huelva, Avda Fuerzas Armadas sn, 21971 Huelva, Spain

3 Instituto de Estructura de la Materia - CSIC. Serrano 113 bis, ES-28006 MADRID

4 Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, County Antrim, BT7 1NN, United Kingdom

5 Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, B-3001 Heverlee, Belgium

6 Centre d'Etudes Nucléaires de Bordeaux Gradignan, 19 Chemin du Solarium, Le Haut Vigneau, CS 10120, F-33175 GRADIGNAN, Cedex

7 School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

8 University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland

9 Departamento de Física Experimental del Instituto de Física, Universidad Nacional Autónoma de México. Aptdo 20-364, México D. F. 01000, Mexico.

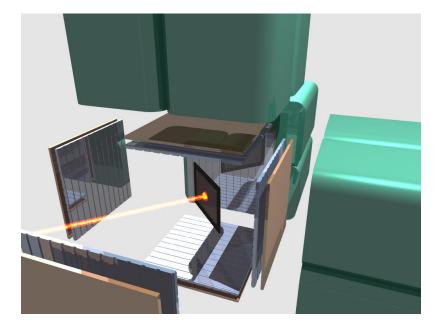
10 Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.

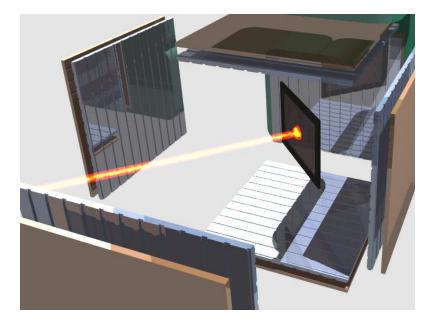
11 Department of Nuclear Physics, Lund University, Lund PO Box 118, 221 00, Sweden.

Thanks for your attention!!

³⁵Ca decay beta-delayed 1- and 2-proton

spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC)


Germanium detectors


 efficiency ~10-15% (at 1 MeV) close geometry (~8 cm)

"Silicon-cube" device

6 **DSSSD** for protons

- \rightarrow detection efficiency ~60% for 1 proton
- \rightarrow energy FWHM ~ 25 keV (low noise P.A.)

