

Unfolding Procedure Recap

Andrea Carlo Marini

Massachusetts Institute of Technology

on behalf of the CMS Collaboration

LHCSW

Follow up ...

Issues on the unfolding were previously discussed in the meeting of the 24/6/2015 [link]

- Problems and issues specific to the unfolding method in the Higgs measurements, particularly to the H- $\gamma\gamma$:
- Why Unfold, how and when ...
- Signal Extraction
 - Large background to the analysis (e.g. in $H \rightarrow \gamma \gamma$, the $\gamma \gamma$ continuum)
 - Mass: profile or not profile

Importance of Unfolding

- Cross sections are computed using:
 - N_T events observed
 - No events coming from out-of-acceptance (fakes)
 - efficiency, acceptance and luminosity

$$\sigma = \frac{N_T - N_O}{\varepsilon \mathcal{L} \mathcal{A}}$$

- Errors are propagated: N_T is Poisson (data),
- No non-knowledge is modelled by systematics (or by other data bins)

$$\Delta \sigma = \frac{\Delta N_T}{\varepsilon \mathcal{AL}} \qquad \qquad \frac{\Delta \sigma}{\sigma} = \frac{\Delta N_T}{N_T - N_O}$$

• For example if N_T=100 and N_O = 50 $\Delta\sigma/\sigma$ = 10/(100-50) = 20%

Multiplicative factors underestimate the errors :

• $\Delta \sigma = 10/100 = 10\%$

Importance of Unfolding II

• The same point can be obtained in migrations:

very well predicted (data/theory) interesting / new physics

Statistical Propagation to the new bin need to take into account the precision of the "very well predicted" events.

If = 226 $= 30 \rightarrow$ Poisson error is $= \sqrt{256} = 16$

Statistical error on green is $\Delta \sigma / \sigma = 16 / 30 = 53\%$ Perfect detector: $\Delta \sigma / \sigma = \sqrt{30/30} = 18\%$ Bin-by-bin: f = 30/256 $\sigma = f * 256$ $\Delta \sigma / \sigma = 16/256 = 6.25\%$ WRONG

Andrea Carlo Marini

27 Nov 2015

Importance of Unfolding III

- Bin-by-Bin is a biased estimation (smaller uncertainties).
 - Also in real life
- Out-of-acceptance:
 - A out-of-acceptance shape should be **subtracted** from the fiducial results
- Bin Migration can be important:
 - change the best fit values
 - change the confidence intervals!
- p_T differences in the statistical uncertainties are small (up to few percent)
- N_{jets} differences in the statistical uncertainties can be big (up to 30%)
 - jet resolution induces important migrations
- data can pull the best-fit values in the different bins

- Method we are and plat to use is base on the ML estimator
 - takes into account: asymm errors, small stat, background functions, nuisances, ..
 - can include regularization
- Same method used for μ production channel (and not $\mu_{\text{dijetCat}} \star f_{\text{VBF}})$
- Same method will be used for pseudo cross-sections

Floating it **coherently** with the signal, reduce the signal error (slide 2)

Andrea Carlo Marini

27 Nov 2015

- In Run I we didn't applied it
- In Run II we should think if we should do
- Can be applied a posteriori with the covariance matrix (next slide)

Post extraction regularization

- Example of Tikhonov regularization
 - using the published data points
 - and the **covariance matrix**

$$\mathcal{F} = \chi^2 + \delta \|\mathbf{L} \cdot \boldsymbol{\mu}\|^2$$

- Effect of regularization are:
 - bias (towards MC) (kernel of the regularization operator)
 - reduce of "large" variance in the distributions
- Study of the regularization parameter, bias ... is needed
- Done a posteriori assuming gaussian errors (with correlation)

Andrea Carlo Marini

30

Njets

Njets

Summary & Conclusions

- Bin-by-Bin correction provides wrong statistical error estimation
 - these can be easily wrong of 20 30%
- ML provides a way to construct estimators
 - take into account error propagation
 - include nuisances, systematics, categories ...
- Signal Extracted detector yields can be unfolded using other standards techniques (e.g. RooUnfold)
- We use already this technology for the couplings
 - same arguments holds
- Regularization can be added in the likelihood or a posteriori

Backup

LHCSW

Possible paths

Reconstruction Level

Truth Level

Adding regularization

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Adding Tickhonov regularization to the likelihood

$$\mathscr{F} = -2\log\mathscr{L}(\mathbf{A}\vec{\mu}|\vec{y}) + \delta \|\mathbf{L}\vec{\mu}\|^2$$

A certain number of choices (L, delta) ...

• it's not trivial to keep under control these parameters with the current statistics.

The goal of the regularization is to give a not distorted spectrum

• use the additional fact that distributions are continuous

Categories, Signal and Literature

• Categories (SVD):

• SVD can be extended with categories

$$\vec{y}_{\text{reg}} = \underline{0} \qquad \mathbf{B} = \left(\mathbf{\hat{A}}^{\mathrm{T}} \Sigma^{-1} \mathbf{\hat{A}}\right)^{+} \mathbf{\hat{A}}^{\mathrm{T}} \Sigma^{-1}$$
$$\mathbf{\hat{A}}_{\text{reg}} = \sqrt{\delta} \mathbf{L} \qquad \vec{x}_{T} = \mathbf{B} \vec{y}$$
$$\Delta \vec{y}_{\text{reg}} = \underline{1} \qquad \Sigma' = \mathbf{B} \Sigma \mathbf{B}^{\mathrm{T}}$$

but signal extraction must be performed before.

- Bayes:
 - cannot use the "built-in" categories due to the very non-poissonian errors of the mgg continuum:
 - Each category should be unfolded separately and results re-combined later

Signal Extraction:

- These methods wants that signal extraction is performed before
- Systematics and nuisances (eg, m_H) will be just approximations
- Covariance matrix approximation for low yields

Unfolding I

- Undo detector effects
- based on linearity assumption
 - Description of smearing through a matrix

$$x_M^i = \hat{R}^{ij} x_T^j + b^i$$

Unfolding I

- Undo detector effects
- based on linearity assumption
 - Description of smearing through a matrix

$$x_M^i = \hat{R}^{ij} x_T^j + b^i$$

Regularization & Unfolding

- What is regularization doing ?
- Penalize high fluctuating solutions
 - bias in the "minimum search"

$$\min_{u} \|\vec{x}_{M} - \vec{b} - \mathbf{R} \cdot \vec{\mu}\|^{2} + \delta \|\mathbf{L} \cdot \vec{\mu}\|$$
$$\vec{x}_{T} = \hat{\mathbf{R}}^{-1} (\vec{x}_{M} - \vec{b})$$

Reduce variance of the final distribution

• Binning is an other way of "regularize"

Andrea Carlo Marini

27 Nov 2015

2