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Issues on the unfolding were previously discussed in the meeting of the 24/6/2015 [link]

!
Problems and issues specific to the unfolding method in the Higgs measurements,

	 particularly to the H➙γγ:

!
• Why Unfold, how and when …

!
• Signal Extraction

• Large background to the analysis (e.g. in H➙γγ, the γγ continuum)

• Mass:  profile or not profile


Follow up …
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https://www.dropbox.com/s/o9edm09mqzsjp47/2015_06_24_LHCXSWG.pdf?dl=0
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• Cross sections are computed using:

• NT events observed

• NO events coming from out-of-acceptance (fakes)

• efficiency, acceptance and luminosity


!
!
!
!
!
• Errors are propagated: NT is Poisson (data),

• NO non-knowledge is modelled by systematics (or by other data bins)

!
!
!
• For example if NT=100 and NO = 50  𝚫𝝈/𝝈 = 10/(100-50) = 20%

!
Multiplicative factors underestimate the errors :

• 𝚫𝝈 = 10/100 = 10% 


Importance of Unfolding 
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• The same point can be obtained in migrations:

!
!
!
!
!
!
!
       very well predicted (data/theory) 

       interesting / new physics

!
Statistical Propagation to the new bin need to take into account the precision of the “very 
well predicted” events.

!
If       =  226       = 30  ➙ Poisson error is = √256 =16 

!
Statistical error on green is 𝚫𝝈/𝝈 = 16 / 30 = 53% 
Perfect detector: 𝚫𝝈/𝝈 = √30/30 = 18%

Bin-by-bin:  f = 30/256     𝝈 = f * 256    𝚫𝝈/𝝈 = 16/256 = 6.25%  WRONG


Importance of Unfolding II
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• Bin-by-Bin is a biased estimation (smaller uncertainties). 

• Also in real life 

!

• Out-of-acceptance: 
• A out-of-acceptance shape should be  

subtracted from the fiducial results 

• Bin Migration can be important:

• change the best fit values

• change the confidence intervals! 

•  pT differences in the statistical  
uncertainties are small (up to few percent) 


• Njets differences in the statistical  
uncertainties can be big (up to 30%) 

• jet resolution induces important migrations


• data can pull the best-fit values  
in the different bins

Importance of Unfolding III

5

CMS Internal



Andrea Carlo Marini 27 Nov 2015

CHAPTER 7. HŸgg DIFFERENTIAL CROSS SECTION MEASUREMENTS
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Figure 7.9: Example of response matrix for the pT variable, where the boxes represent the
integral of the shapes in Fig. 7.8, evaluated for mH = 125GeV. On the right the out-of-acceptance
bin normalized to the corresponding accepted events.
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Figure 7.10: Sketch exemplifying how the fit is performed.
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• Method we are and plat to use is base on the ML estimator

• takes into account: asymm errors, small stat, background functions, nuisances, ..

• can include regularization


Same method used for μ production channel (and not μdijetCat * fVBF) 

Same method will be used for pseudo cross-sections

!
!
!
!
!
!
!
!
!
!
!
Out of acceptance is subtracted:

• fixing it to MC

• or fixing it to the total xSec 

Floating it coherently with the signal, reduce the signal error (slide 2)

Proposed method 
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minimization term:

krk2 =

�����
Â~xT �~y

D~y

�����

2

+dkL~xT k2 (7.4)

krk2 =
D

Â~xT �~y,S�1(Â~xT �~y)
E

where S is the covariance matrix of the measured histograms ~x i
M, and h·,S�1·i is the induced

scalar product. L is the linear operator related to the generalized Tikhonov regularization, and d
is the strength of the regularization. Notice that without loss of generality it is possible to write
the regularization as an extra category, where:

~yreg = 0 (7.5)

Âreg =
p

dL (7.6)
D~yreg = 1 (7.7)

These equations would lead to the simple inversion solution:

B =
⇣

ÂTS�1Â
⌘+

ÂTS�1 (7.8)

~xT = B~y (7.9)

S0 = BSBT (7.10)

where the + operator represents the pseudo-inverse of the matrix [112, 113], a generalization of
the inverse operator for non-invertible or non-squared matrices.

For the Bayesian (or eventually also SVD-Tikhonov) approach one possibility is to do what
is done in Chapters 5 and 6 for the combination of the e and µ channels:

• Solve each Category with bayesian (or SVD) unfolding

• Propagate errors on each bin

• take the diagonal elements and use them for a weighted combination.

A different approach similar to the one used for this analysis is to recast the c2 problem in terms
of a likelihood one. Equation 7.4 can be rewritten in the following way:

F = �2logL (Â~xT |~y)+dkL~xT k2 (7.11)

F = �2logL (A~µ|~y)+dkL~µk2 (7.12)

eventually with a regularization term of strength d , and the solution is given by the minimization
over~xT or~µ of the functional F . To this likelihood we will add in Equation 7.15 the subtraction
of the background component coming from the smoothly falling diphoton spectrum. The
difference between the two expressions is in whether the regularization is applied on the signal
strengths (~µ), rather than on the truth distribution directly, as discussed in Chapter 5; the relation
between A and Â is then:

Ai j = Âi jxMC
T,i (7.13)

87
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• In Run I we didn’t applied it

• In Run II we should think if we should do

• Can be applied a posteriori with the covariance matrix (next slide)

Regularization
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• Example of Tikhonov regularization

• using the published data points

• and the covariance matrix 

!
!
!
• Effect of regularization are:

• bias (towards MC)  

(kernel of the regularization operator)

• reduce of “large” variance in the  

distributions 

• Study of the regularization parameter, 
bias … is needed 


!
• Done a posteriori  

assuming gaussian 
errors (with correlation)

Post extraction regularization
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• Bin-by-Bin correction provides wrong statistical error estimation

• these can be easily wrong of 20 – 30%


!
• ML provides a way to construct estimators

• take into account error propagation

• include nuisances, systematics, categories …


!
• Signal Extracted detector yields can be unfolded using other  

standards techniques (e.g. RooUnfold)

!

• We use already this technology for the couplings

• same arguments holds 


!
• Regularization can be added in the likelihood or a posteriori

Summary & Conclusions
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Possible paths
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• Adding Tickhonov regularization to the likelihood

!
!
!
A certain number of choices (L, delta) … 

• it’s not trivial to keep under control these parameters with the current statistics.


!
The goal of the regularization is to give a not distorted spectrum

• use the additional fact that distributions are continuous 

Adding regularization
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difference between the two expressions is in whether the regularization is applied on the signal
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87Particle Level  DATA/Theory
•Background subtraction 
•(Madgraph/data-driven when possible)
•Phase space Bkg subtraction
•Undo detector effects (efficiencies/smearing)
•Singular Value Decomposition method
•Alternative models also studied (Bayesian, 
Inversion, Bin-Bin corr.)

Unfolding from data→true
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Unfolding
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Unfolding from data→true
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• Categories (SVD):

• SVD can be extended with categories  
 
 
 
 
 
but signal extraction must be performed before. 


• Bayes:

• cannot use the “built-in” categories due to the very non-poissonian errors  

of the mgg continuum:

• Each category should be unfolded separately and results re-combined later


!
Signal Extraction: 
• These methods wants that signal extraction is performed before

• Systematics and nuisances (eg, mH) will be just approximations

• Covariance matrix approximation for low yields

Categories, Signal and Literature
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F = �2logL (A~µ|~y)+dkL~µk2 (7.12)

eventually with a regularization term of strength d , and the solution is given by the minimization
over~xT or~µ of the functional F . To this likelihood we will add in Equation 7.15 the subtraction
of the background component coming from the smoothly falling diphoton spectrum. The
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Ai j = Âi jxMC
T,i (7.13)
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Â~xT �~y

D~y

�����

2

+dkL~xT k2 (7.4)

krk2 =
D
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• Undo detector effects

• based on linearity assumption

• Description of smearing through a matrix

Unfolding 1
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DIFFERENTIAL STUDIES OF VECTOR BOSON PLUS JET AND HIGGS PRODUCTION

In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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CHAPTER 5. Z+JETS ANGULAR DISTRIBUTIONS

reduction in the e–µ differences has been observed. The corrections are around 2–3% in most
of the cases, for the post-FSR ! dressed or post-FSR ! pre-FSR transitions, showing that
the observables we are interested in don’t have strong dependencies on FSR effects. The only
exception to this statement is the inclusive Z ! e+e� event shape lntT where there is a hint of a
5% difference, which we cover assigning a systematic uncerainty. The overall correction from
dressed to pre-FSR is smaller than 1%, also for lntT, giving confidence that part of the effect of
the FSR is effectively recovered with the dressing procedure. Data are unfolded directly to the
dressed level, in order to avoid bin-by-bin corrections for the pre/post-FSR. The dressed level is
defined on top of the particle level, making it suitable to be computed with any MC generator
(without looking at the ill-defined history of generated particles).

The particle level jets in MC events are reconstructed by clustering the generated stable
particles (after hadronization) using the same anti-kT algorithm used for the data with the same
parameter R = 0.5. The selection criteria used for data are also applied to particle level leptons
and jets: the two leading leptons are required to have pT > 20GeV and |h| < 2.4, while the jets
must have pT > 50GeV and |h| < 2.5. An angular separation of DR(`, j) > 0.4 is also required
between the two leading leptons and any accepted jet.

5.3.3 Unfolding Procedure

The unfolding procedure maps the background-subtracted detector level distributions to the
particle level ones. Detector resolution can create effects of bin migration. For example, an event
containing a Z boson produced in association with Njets at the particle level, can migrate to the
Njets+1 jets final state because of the jet pT resolution. For the same mechanism, events can
migrate out of the geometric and kinematic acceptance: such migrations can change the cross
section in a specific bin by as much as 30%.

The basic idea of the unfolding procedure is that the detector effects are modeled through
a response matrix, which is determined from MC simulation (separately for each lepton flavor
and each observable), by associating the particle level values to their reconstructed quantities.
Once the response matrix is computed, the unfolding of data to the particle level is performed
using the singular value decomposition (SVD) method [78] (see next section), implemented in
the RooUnfold package [79].

The unfolding problem can be formulated as follows [78, 80, 81]:

xi
M = R̂i jx j

T +bi (5.3)

where~xM and~xT are vectors of the measured and truth distribution respectively and the vector~b
represents the background events. The matrix R̂ contains the efficiency information, it models
the experimental resolution on the considered observable, and it is responsible for modelling the
migration of events across the bins. The system of linear equations states also that the observed
number of events is proportional to the expected number of events in all bins.
Conceptually the solution of this equation can easily be obtained inverting the matrix R̂ in
Equation 5.3:

~xT = R̂�1(~xM �~b) (5.4)

41



Andrea Carlo Marini 27 Nov 2015

• Undo detector effects

• based on linearity assumption

• Description of smearing through a matrix

Unfolding 1

15

Truth distribution

Bin

Reco distributionTruth distribution

Reco
Smeared

Lost

Truth distributionR
ec

o 
di

st
rib

ut
io

n

Matrix

DIFFERENTIAL STUDIES OF VECTOR BOSON PLUS JET AND HIGGS PRODUCTION

In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si
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~uT

i (~xM �~b)
i
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where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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reduction in the e–µ differences has been observed. The corrections are around 2–3% in most
of the cases, for the post-FSR ! dressed or post-FSR ! pre-FSR transitions, showing that
the observables we are interested in don’t have strong dependencies on FSR effects. The only
exception to this statement is the inclusive Z ! e+e� event shape lntT where there is a hint of a
5% difference, which we cover assigning a systematic uncerainty. The overall correction from
dressed to pre-FSR is smaller than 1%, also for lntT, giving confidence that part of the effect of
the FSR is effectively recovered with the dressing procedure. Data are unfolded directly to the
dressed level, in order to avoid bin-by-bin corrections for the pre/post-FSR. The dressed level is
defined on top of the particle level, making it suitable to be computed with any MC generator
(without looking at the ill-defined history of generated particles).

The particle level jets in MC events are reconstructed by clustering the generated stable
particles (after hadronization) using the same anti-kT algorithm used for the data with the same
parameter R = 0.5. The selection criteria used for data are also applied to particle level leptons
and jets: the two leading leptons are required to have pT > 20GeV and |h| < 2.4, while the jets
must have pT > 50GeV and |h| < 2.5. An angular separation of DR(`, j) > 0.4 is also required
between the two leading leptons and any accepted jet.

5.3.3 Unfolding Procedure

The unfolding procedure maps the background-subtracted detector level distributions to the
particle level ones. Detector resolution can create effects of bin migration. For example, an event
containing a Z boson produced in association with Njets at the particle level, can migrate to the
Njets+1 jets final state because of the jet pT resolution. For the same mechanism, events can
migrate out of the geometric and kinematic acceptance: such migrations can change the cross
section in a specific bin by as much as 30%.

The basic idea of the unfolding procedure is that the detector effects are modeled through
a response matrix, which is determined from MC simulation (separately for each lepton flavor
and each observable), by associating the particle level values to their reconstructed quantities.
Once the response matrix is computed, the unfolding of data to the particle level is performed
using the singular value decomposition (SVD) method [78] (see next section), implemented in
the RooUnfold package [79].

The unfolding problem can be formulated as follows [78, 80, 81]:

xi
M = R̂i jx j

T +bi (5.3)

where~xM and~xT are vectors of the measured and truth distribution respectively and the vector~b
represents the background events. The matrix R̂ contains the efficiency information, it models
the experimental resolution on the considered observable, and it is responsible for modelling the
migration of events across the bins. The system of linear equations states also that the observed
number of events is proportional to the expected number of events in all bins.
Conceptually the solution of this equation can easily be obtained inverting the matrix R̂ in
Equation 5.3:

~xT = R̂�1(~xM �~b) (5.4)
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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reduction in the e–µ differences has been observed. The corrections are around 2–3% in most
of the cases, for the post-FSR ! dressed or post-FSR ! pre-FSR transitions, showing that
the observables we are interested in don’t have strong dependencies on FSR effects. The only
exception to this statement is the inclusive Z ! e+e� event shape lntT where there is a hint of a
5% difference, which we cover assigning a systematic uncerainty. The overall correction from
dressed to pre-FSR is smaller than 1%, also for lntT, giving confidence that part of the effect of
the FSR is effectively recovered with the dressing procedure. Data are unfolded directly to the
dressed level, in order to avoid bin-by-bin corrections for the pre/post-FSR. The dressed level is
defined on top of the particle level, making it suitable to be computed with any MC generator
(without looking at the ill-defined history of generated particles).

The particle level jets in MC events are reconstructed by clustering the generated stable
particles (after hadronization) using the same anti-kT algorithm used for the data with the same
parameter R = 0.5. The selection criteria used for data are also applied to particle level leptons
and jets: the two leading leptons are required to have pT > 20GeV and |h| < 2.4, while the jets
must have pT > 50GeV and |h| < 2.5. An angular separation of DR(`, j) > 0.4 is also required
between the two leading leptons and any accepted jet.

5.3.3 Unfolding Procedure

The unfolding procedure maps the background-subtracted detector level distributions to the
particle level ones. Detector resolution can create effects of bin migration. For example, an event
containing a Z boson produced in association with Njets at the particle level, can migrate to the
Njets+1 jets final state because of the jet pT resolution. For the same mechanism, events can
migrate out of the geometric and kinematic acceptance: such migrations can change the cross
section in a specific bin by as much as 30%.

The basic idea of the unfolding procedure is that the detector effects are modeled through
a response matrix, which is determined from MC simulation (separately for each lepton flavor
and each observable), by associating the particle level values to their reconstructed quantities.
Once the response matrix is computed, the unfolding of data to the particle level is performed
using the singular value decomposition (SVD) method [78] (see next section), implemented in
the RooUnfold package [79].

The unfolding problem can be formulated as follows [78, 80, 81]:

xi
M = R̂i jx j

T +bi (5.3)

where~xM and~xT are vectors of the measured and truth distribution respectively and the vector~b
represents the background events. The matrix R̂ contains the efficiency information, it models
the experimental resolution on the considered observable, and it is responsible for modelling the
migration of events across the bins. The system of linear equations states also that the observed
number of events is proportional to the expected number of events in all bins.
Conceptually the solution of this equation can easily be obtained inverting the matrix R̂ in
Equation 5.3:

~xT = R̂�1(~xM �~b) (5.4)
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