Unfolding Procedure Recap

Andrea Carla Marini
Massachusetts Institute of Technology

on behalf of the CMS Collaboration
LHCSW

Issues on the unfolding were previously discussed in the meeting of the 24/6/2015 [link]
Problems and issues specific to the unfolding method in the Higgs measurements, particularly to the $\mathrm{H} \rightarrow \gamma \gamma$:

- Why Unfold, how and when ...
- Signal Extraction
- Large background to the analysis (e.g. in $\mathrm{H} \rightarrow \gamma \gamma$, the $\gamma \gamma$ continuum)
- Mass: profile or not profile

Importance of Unfolding

- Cross sections are computed using:
- N_{T} events observed
- No events coming from out-of-acceptance (fakes)
- efficiency, acceptance and luminosity

$$
\sigma=\frac{N_{T}-N_{O}}{\varepsilon \mathcal{L} \mathcal{A}}
$$

- Errors are propagated: N_{T} is Poisson (data),
- No non-knowledge is modelled by systematics (or by other data bins)

$$
\Delta \sigma=\frac{\Delta N_{T}}{\varepsilon \mathcal{A L}} \quad \frac{\Delta \sigma}{\sigma}=\frac{\Delta N_{T}}{N_{T}-N_{O}}
$$

- For example if $\mathrm{N}_{\mathrm{T}}=100$ and $\mathrm{N}_{\mathrm{O}}=50 \Delta \boldsymbol{\sigma} / \boldsymbol{\sigma}=10 /(100-50)=20 \%$

Multiplicative factors underestimate the errors :

- $\Delta \sigma=10 / 100=10 \%$

Importance of Unfolding II

- The same point can be obtained in migrations:

\square very well predicted (data/theory)
\square interesting / new physics

Statistical Propagation to the new bin need to take into account the precision of the "very well predicted" events.

If $\square=226 \square=30 \rightarrow$ Poisson error is $=\sqrt{ } 256=16$
Statistical error on green is $\Delta \boldsymbol{\sigma} / \boldsymbol{\sigma}=16 / 30=53 \%$
Perfect detector: $\Delta \sigma / \sigma=\sqrt{ } 30 / 30=18 \%$
Bin-by-bin: f $=30 / 256 \quad \sigma=f^{*} 256 \quad \Delta \sigma / \sigma=16 / 256=6.25 \%$ WRONG

Importance of Unfolding III

- Bin-by-Bin is a biased estimation (smaller uncertainties).
- Also in real life

- Out-of-acceptance:

- A out-of-acceptance shape should be subtracted from the fiducial results
- Bin Migration can be important:
- change the best fit values
- change the confidence intervals!
- P_{T} differences in the statistical uncertainties are small (up to few percent)
- $N_{\text {jets }}$ differences in the statistical uncertainties can be big (up to 30\%)
- jet resolution induces important migrations
- data can pull the best-fit values in the different bins

Proposed method

- Method we are and plat to use is base on the ML estimator
- takes into account: asymm errors, small stat, background functions, nuisances, ..
- can include regularization

Same method used for μ production channel (and not $\mu_{\text {dijetCat }}{ }$ fvBF)
Same method will be used for pseudo cross-sections

$$
\mathscr{F}=-2 \log \mathscr{L}(\mathbf{A} \vec{\mu} \mid \vec{y})+\delta\|\mathbf{L} \vec{\mu}\|^{2}
$$

fit simultaneously in cat0/cat1 to get the
Bin strength modifiers $\mu=\left(\mu_{0}, \mu_{1}\right)$
Out of acceptance is subtracted:

- fixing it to MC
- or fixing it to the total x Sec

Floating it coherently with the signal, reduce the signal error (slide 2)

Regularization

- In Run I we didn't applied it
- In Run II we should think if we should do
- Can be applied a posteriori with the covariance matrix (next slide)

fit simultaneously in cat0/cat1 to get the
Bin strength modifiers $\mu=\left(\mu_{0}, \mu_{1}\right)$

Post extraction regularization

- Example of Tikhonov regularization
- using the published data points
- and the covariance matrix

$$
\mathcal{F}=\chi^{2}+\delta\|\mathbf{L} \cdot \mu\|^{2}
$$

- Effect of regularization are:
- bias (towards MC) (kernel of the regularization operator)
- reduce of "large" variance in the distributions
- Study of the regularization parameter, bias ... is needed
- Done a posteriori assuming gaussian errors (with correlation)

Njets

Summary \& Conclusions

- Bin-by-Bin correction provides wrong statistical error estimation
- these can be easily wrong of $20-30 \%$
- ML provides a way to construct estimators
- take into account error propagation
- include nuisances, systematics, categories ...
- Signal Extracted detector yields can be unfolded using other standards techniques (e.g. RooUnfold)
- We use already this technology for the couplings
- same arguments holds
- Regularization can be added in the likelihood or a posteriori

Backup

LHCSW

Possible paths

Adding regularization

- Adding Tickhonov regularization to the likelihood

$$
\mathscr{F}=-2 \log \mathscr{L}(\mathbf{A} \vec{\mu} \mid \vec{y})+\delta\|\mathbf{L} \vec{\mu}\|^{2}
$$

A certain number of choices (L, delta) ...

- it's not trivial to keep under control these parameters with the current statistics.

The goal of the regularization is to give a not distorted spectrum

- use the additional fact that distributions are continuous

Categories, Signal and Literature

- Categories (SVD):
- SVD can be extended with categories

$$
\begin{array}{rlrl}
\vec{y}_{\text {reg }} & =\underline{0} & \mathbf{B} & =\left(\hat{\mathbf{A}}^{\mathrm{T}} \Sigma^{-1} \hat{\mathbf{A}}\right)^{+} \hat{\mathbf{A}}^{\mathrm{T}} \Sigma^{-1} \\
\hat{\mathbf{A}}_{\text {reg }} & =\sqrt{\delta} \mathbf{L} & \vec{x}_{T} & =\mathbf{B} \vec{y} \\
\Delta \vec{y}_{\mathrm{y} \text { eg }} & =\underline{1} & \Sigma^{\prime} & =\mathbf{B} \Sigma \mathbf{B}^{\mathrm{T}}
\end{array}
$$

but signal extraction must be performed before.

- Bayes:
- cannot use the "built-in" categories due to the very non-poissonian errors of the mgg continuum:
- Each category should be unfolded separately and results re-combined later

Signal Extraction:

- These methods wants that signal extraction is performed before
- Systematics and nuisances (eg, m_{H}) will be just approximations
- Covariance matrix approximation for low yields

Unfolding I

- Undo detector effects
- based on linearity assumption
- Description of smearing through a matrix

Matrix

\square Smeared
\square background

Reco distribution

$$
x_{M}^{i}=\hat{R}^{i j} x_{T}^{j}+b^{i}
$$

Unfolding I

- Undo detector effects
- based on linearity assumption
- Description of smearing through a matrix

\square Smeared
\square background

Reco distribution

$$
x_{M}^{i}=\hat{R}^{i j}\left(x_{T}^{J}\right)+b^{i}
$$

Regularization \& Unfolding

- What is regularization doing?
- Penalize high fluctuating solutions
- bias in the "minimum search"

- Reduce variance of the final distribution

- Binning is an other way of "regularize"

