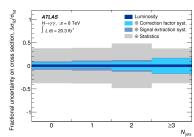


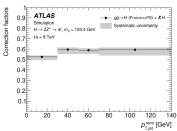


1/9

# Unfolding procedures

Kerstin Tackmann (DESY) summarizing studies and thoughts from ATLAS


2nd LHCHXS meeting on fiducial cross sections November 27, 2015


Kerstin Tackmann (DESY) Unfolding procedures November 27, 2015

### Recap of ATLAS unfolding procedure.

Detailed talk on ATLAS unfolding procedure was shown by Bijan Haney at the last meeting

- Bin-by-bin unfolding correcting for resolution, efficiency and acceptance effects:  $\sigma_i = N_i^{\rm signal}/(\mathcal{L}C_i)$ 
  - \* Cross-checked against iterative unfolding
- Uncertainties on correction factors evaluated by varying composition of production modes, standard perturbative and Pdf uncertainties, ..., reweighting MC to match better measured distributions, ...
- With the present statistics, systematic uncertainties are small compared to statistical uncertainties





# A few words on biases in unfolding.

- In general, unfolding introduces biases from simulation not perfectly describing the physics in data, and more important for larger bin-to-bin migrations
  - more important for jet-related variables than photon- or lepton-related variables

#### Biases introduced through...

- physics/model dependence of correction factors/detector response matrix
  - ⋆ Bin-by-bin unfolding, "CMS method", ...
- regularization procedure (usually uses MC truth distribution)
  - ★ Iterative unfolding, SVD, IDS, ...

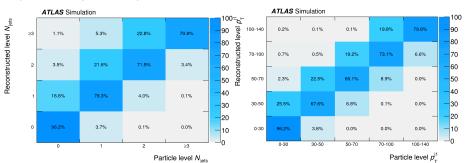
Different methods are different methods and do not necessarily have identical uncertainties (statistical and systematic), biases and correlations

- → Choice of method is a trade-off between biases and variance, and depends on the problem (usually no "single right solution")
  - ⋆ Of course for any method biases need to be estimated properly

Kerstin Tackmann (DESY) Unfolding procedures November 27, 2015

## Estimating uncertainties/unfolding biases.

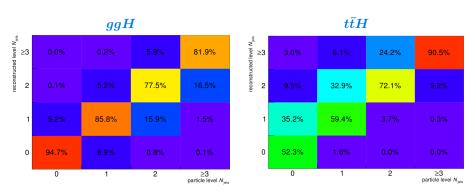
#### Relevant sources of uncertainties/biases for differential Higgs cross sections


- relative contributions of the different production modes
- shape of individual spectra (missing higher-order corrections, pdf choice, ...)
- → Need to be varied in large enough range to estimate uncertainties from unfolding procedure

NB: Estimating these biases is an important part of determining proper regularization strength for regularized unfolding

# Determination of binning.

- Binning is chosen to limit migration effects
  - $\star~p > 60\%$  , where  $p = N_i^{
    m fid+reco}/N_{
    m reco}$
  - ...not a very strict requirement...
- On the other hand, larger bins can enlarge physics/model dependence

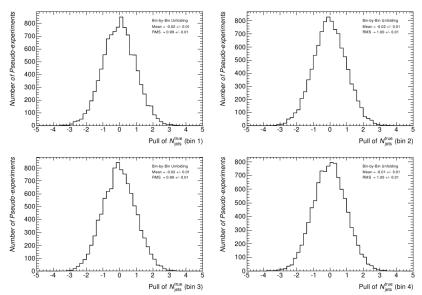

#### P(truth bin|reco bin)



Kerstin Tackmann (DESY)

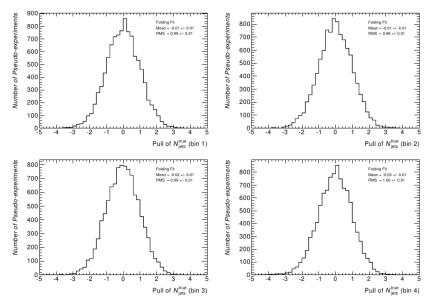
### Physics/model dependence of detector response.

- Not just bin-by-bin correction factors are physics/model dependent, but also detector matrices
- → Also methods relying on the full detector response matrix need to estimate corresponding uncertainties/biases




<sup>&</sup>quot;Toy detector resolution matrices" – thanks to Dag Gillberg!

Kerstin Tackmann (DESY) Unfolding procedures November 27, 2015


#### Simple unfolding tests.

Same underlying truth distribution in "data" and "MC"



### Simple unfolding tests.

Same underlying truth distribution in "data" and "MC"



### Summary.

- Simple toy tests ok: unbiased and ok coverage
- Ongoing: extend study to different underlying truth distributions in "data" and "MC" to check biases and coverage
  - ★ Expect to see biases with any method
  - Corresponding uncertainties need to be estimated and should not dominate uncertainties

# Backup

# Bin-by-bin unfolding.

$$\frac{1}{C_i} = \frac{N_i^{\rm Fid}}{N_i^{\rm Reco}} = \frac{P_i}{\epsilon_i} \qquad P_i = \frac{N_i^{\rm Fid\&Reco}}{N_i^{\rm Reco}} \quad \epsilon_i = \frac{N_i^{\rm Fid\&Reco}}{N_i^{\rm Fid}}$$

- Bin-by-bin correction factors, c<sub>i</sub>, are calculated from MC simulations in order to correct for detector effects.
  - NFid is the # of truth level MC events after event selection within a fiducial volume.
  - N<sup>Reco</sup> is the # of MC events after event selection with detector effects (e.g. gaps in the detector, Jet reconstruction efficiency, other smearing effects, etc.)
  - NFid&Reco are events that pass the Higgs event selection under both circumstances.
- Purity, Pi, accounts for the number of fakes in a bin.
- Efficiency, ei, accounts for poor object reconstruction and identification.

[Slide from Bijan]

#### Unfolding uncertainties.

There is uncertainty in both N<sup>Reco</sup> and N<sup>fid</sup> because the generators themselves may not match reality. There is extra uncertainty specifically in N<sup>Reco</sup> because the MC smearing may not match reality.

- · Generator Modeling and Uncertainty
  - Alternative MC generators were used and their envelope was taken as an uncertainty.
    - · eigenvector variations of the baseline CT10 PDF.
    - · central values of alternative MSTW2008NLO and NNPDF2.3 PDFs.
  - · Signal composition of the production modes was varied.
    - VBF+WH+ZH production XS were doubled and halved.
    - ttH production XS was multiplied x5 and x0.
  - · Varying the renormalization and factorization scales by double and a half.
  - Reweighing was applied to the MC to make it more closely reflect the observed distribution of data.
    - The unfolded data distributions of p<sub>T</sub> and |y| were compared to fiducial MC predictions.
       Reweighing functions from data/MC were used to correct the fiducial p<sub>T</sub> and |y| spectrum.
    - Data tend to have harder Higgs p<sub>T</sub>, and more forward |y|.

[Slide from Bijan]