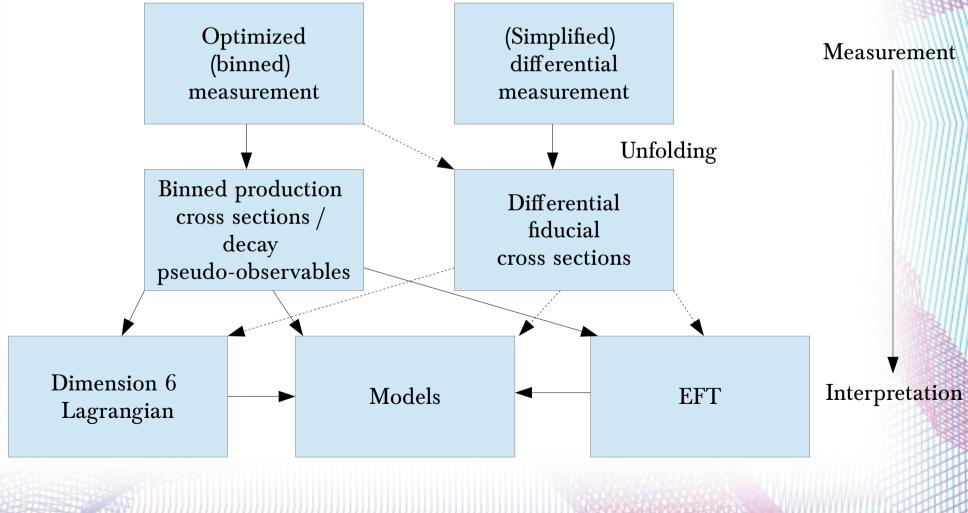

YR4, WG2, and Diff. XS

Chris Hays, Oxford University

Differential cross section meeting 2 December 2015

Overview

• Measurement and interpretation


• Use cases

• YR4

• Summary

Measurement and interpretation

• The chain from measurement to interpretation:

2 Dec 2015

C. Hays, Oxford University

WG2 sections in YR4

• One chapter introducing the EFT framework

III Effective Field Theory Predictions

III.EFT formalism

1	Warsaw basis
2	Phenomenological effective Lagrangian and its map to Warsaw basis
3	Higgs basis proposal
4	Relations to other popular bases (SILH, HISZ, etc - incl. Rosetta)

III.EFT validity

1	General caveats	, contrasting	with concrete	BSM of WG3	
---	-----------------	---------------	---------------	------------	--

2 Link to WG3 (what would light NP look like)

III.EFT application

2 Dec 2015

1	LO EFT tools				
1.1	Tools for translations (Rosetta)				
1.2	Tools for calculating observables (e.g EHdecay)				
1.3	Tools for simulating events (e.g. Madgraph)				
1.4	Tools for comparing with experiments (e.g. Sfitter) .				
2	NLO EFT results				
2.1	NLO EW				
2.2	NLO QCD				
2	Internetician in terms of new linear DET				

The present EFT note will essentially become this section of chap. III

(LHCHXSWG-INT-2015-001)

- The purpose of this whole chapter is to provide an EFT "theory reference" (specifying in particular common notations, tools, EFT applicability regimes, etc...)
- No explicit recommendations on data analyses

3 Interpretations in terms of non-linear EF

7

(G Isidori,

WG2 Sep

meeting)

WG2 sections in YR4

• One chapter on measurements and recommendations

- IV Measurements and Observables
- **IV.1 Introduction**

IV.2 Pseudo Observables

- Concept of POs
 Template xsec
 tests how well new physics is covered
 Continuous POs
- 3.1 soft EW correction
- 3.2 hopefully also some production stuff

• The purpose of this chapter is to define the general 3-steps strategy for data analysis:

Fiducial $Xs \rightarrow PO \rightarrow EFT$

(G Isidori, WG2 Sep meeting)

The present temp-Xs/PO note will become this section

 The precise order of sections IV. 2-4 still under discussion (at present this is my favorite order)

IV.3 Recommendation of LO EFT interpretation of LHC Higgs results 1 Assumptions 2 Scope

Specific recommend. for EFT-based analyses will appear here

IV.4 Fiducial xsec

3

2

2 Dec 2015

 Task force

 Tests how well new physics is covered (using the EFT as general example)
 ...

Comments on YR4 status

• EFT chapter more advanced than measurement chapter

- Issues to be worked out with template cross sections and recommendations
- Not clear where to put subsections on morphing and connecting EFTs to models
- Tangentially affects subsection on differential cross section
 - Potential overlap with template cross sections
 - Consider use cases

Use case: New models

• Many studies connect models to EFT or dim-6 Lagrangian

- Combined experimental results on template cross sections or differential cross sections can be used to constrain these parameters, or the model parameters directly
 - Experiments can produce EFT/dim-6/model constraints directly according to recommendations
 - Theorists can use combined cross section results to constrain their preferred EFT/model
- Complementarity of template and differential cross sections
 - Template: production level; most precise measurements
 - Differential: decay level; channel-specific binning

Use case: Standard Model

• Some open issues

- e.g. resummation scale for b-quark loop (compare predictions to data at low $p_T^{H_2}$)
- template cross sections sensitive to production effects
 - complementary information from finer-binned differential measurements?
- experiments can compare combined template or differential measurements directly to SM predictions

Summary

Differential cross section issues primarily measurement-related

- Aim to maximize data sensitivity for comparison to theory
 - Combine measurements where possible
 - Consider long-term (full Run 2) sensitivity as well as 2016
 - Aim for recommendations that can last
 - Can of course be revisited if necessary

9

- Valuable to provide example use cases
 - e.g. models where template cross sections are not sufficient
 - CP information?
 - can show model effects on top of distributions
 - could use "straw man" sensitivity estimate

C. Hays, Oxford University