AdS_{4} solutions of massive IIA from dyonic supergravity

and their simple Chern-Simons duals

Oscar Varela

(Harvard and Ecole Polytechnique)

CERN String Theory Seminar

8 December 2015

Based on

- A. Guarino, D. Jafferis, OV, Phys. Rev. Lett. 115 (2015) 9 [arXiv:1504.08009]
- A. Guarino, OV, arXiv:1508.04432
- A. Guarino, OV, arXiv:1509.02526
- OV, arXiv:1509.07117

Three puzzles

(1) Three puzzles
(2) Dyonic $\operatorname{ISO}(7)$ supergravity
(3) Consistent truncation of massive type IIA on S^{6}
(4) AdS_{4} solutions of massive IIA
(5) Further discussion

Puzzle 1: AdS/CFT for the simplest CS?

- A natural way to obtain a CFT_{3} is to start from Chern-Simons (CS) theory and add couplings. CS with a simple gauge group $\mathrm{SU}(N)$ and adjoint matter seemed like a good candidate to describe the M2-brane CFT_{3}.

However: [Schwarz '04]

- Such CFT_{3} s cannot preserve maximal supersymmetry.
- The CS term seems to be related to the Romans mass.

Puzzle 1: AdS/CFT for the simplest CS?

- The M2-brane CFT_{3} is now known to be described by an $(\mathcal{N}=6)$ CS-matter theory with non-simple gauge group $\mathrm{SU}(N) \times \mathrm{SU}(N)$ at levels k and $-k$.
[Aharony, Bergman, Jafferis, Maldacena '08]
- The question remained: do the simplest type of CS-matter theory enjoy AdS_{4} duals? Prospects looked bleak. For most of these theories the spectrum has light higher spin operators and exponential growth. [Minwalla, Narayan, Sharma, Umesh, Yin '11]
- Some of these simplest CS-matter theories can still have conventional AdS_{4} duals. But none has been found until now.

Puzzle 2: AdS_{4} backgrounds of type IIA

- M-theory and type IIB have many known AdS_{4} and AdS_{5} backgrounds, respectively, in and beyond the Freund-Rubin class.
- This is related to the presence of $\hat{F}_{(4)}$ and $\hat{F}_{(5)}$ in the respective field contents. This is in turn related to the fact that the dual CFTs should be conformal phases of the M2 and D3 brane field theories.
- Massless and massive type IIA also have an $\hat{F}_{(4)}$. However, excluding the massless IIA solutions obtained from M-theory on S^{1}, essentially only one class of AdS_{4} solutions, of massive IIA, is explicitly know analytically.

Puzzle 2: AdS_{4} backgrounds of type IIA

- This is the class of direct products $\mathrm{AdS}_{4} \times M_{6}$, where M_{6} is nearly-Kähler, and where the IIA forms take values along the nearly-Kähler forms on M_{6}. [Behrndt, Cvetic '04] This class generalises to M_{6} half-flat. [Luist, Tsimpis '04]
- These manifolds can be thought to be six-dimensional counterparts of five-dimensional Sasaki-Einstein manifolds.
- However, while infinitely many Sasaki-Einstein five-manifolds are known, e.g. in the cohomogeneity-one class, [Gauntlett, Martelli, Sparks, Waldram '04] the only explicitly known nearly-Kähler manifolds are homogeneous. Similarly, only homogeneous examples are known in the half-flat case [Koerber, Lüst, Tsimpis '08]
- Generalisations with $\operatorname{SU}(3) \times \operatorname{SU}(3)$ structure can be studied [Lüst, Tsimpis '09] but there is no known analytical example in massive IIA (see however [Rota, Tomasiello '15])

Puzzle 3: dyonic $\mathcal{N}=8$ supergravity

- $D=4 \mathcal{N}=8$ gauged supergravity often admits continuous or discrete symplectic deformations that respect $\mathcal{N}=8$ supersymmetry and the gauge group
[Dall'Agata, Inverso, Trigiante, '12]
- E.g. the covariant derivatives acquire a new coupling to the magnetic vectors proportional to a parameter c,

$$
D=d-g\left(\mathcal{A}^{\Lambda}-c \tilde{\mathcal{A}}_{\Lambda}\right) .
$$

- At finite gauge coupling g, electric/magnetic duality is broken and the theory typically becomes sensitive to the symplectic frame specified by c. The physical couplings of the supergravity develop a c dependence.

Puzzle 3: dyonic $\mathcal{N}=8$ supergravity

- Do these $\mathcal{N}=8$ gaugings enjoy a string or M-theory origin? For dyonic gaugings with AdS vacua, do these have CFT_{3} duals?
- For example, the purely electric $\mathcal{N}=8 \mathrm{SO}(8)$ gauging arises from consistent truncation of $D=11$ supergravity on S^{7}. [de Wit, Nicolai ' ${ }^{87}$]
- All the solutions of the $D=4$ theory give rise to solutions in $D=11$. In particular, the $D=4$ vacua uplift to $\mathrm{AdS}_{4} \times S^{7}$ M-theory backgrounds.
- Some of these have known CFT_{3} duals. Eg, the central vacuum uplifts to Freund-Rubin, which is dual to ABJM.

Our new results

- Massive type IIA supergravity admits an $\mathcal{N}=8$ consistent truncation on S^{6}.
- The resulting $D=4$ theory has a dyonically-gauged $\operatorname{ISO}(7)=\mathrm{SO}(7) \ltimes \mathbb{R}^{7}$ gauge group.
- All the solutions of the $D=4$ theory give rise to solutions in $D=10$. In particular, the $D=4$ vacua uplift to $\mathrm{AdS}_{4} \times S^{6}$ massive type IIA backgrounds.

We found the first explicit $\mathcal{N}=2$ such solution, a new $\mathcal{N}=1$ solution and recover other solutions. All of these have the $\mathrm{SU}(3) \times \mathrm{SU}(3)$ structure of [Lüst, Tsimpis '09].

Our new results

- Massive type IIA on these $\operatorname{AdS}_{4} \times S^{6}$ backgrounds is dual to the simple CS theories of type discussed above. We gave the first $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ precision match.
- The $D=4$ magnetic coupling $m \equiv g c$, the $D=10$ Romans mass $\hat{F}_{(0)}$ and the CS level k are related by

$$
m=\hat{F}_{(0)}=k /\left(2 \pi \ell_{s}\right),
$$

where $\ell_{s}=\sqrt{\alpha^{\prime}}$ is the string length.

Outline

(1) Three puzzles
(2) Dyonic $\operatorname{ISO}(7)$ supergravity
(3) Consistent truncation of massive type IIA on S^{6}
(4) AdS_{4} solutions of massive IIA
(5) Further discussion

Dyonic ISO(7) supergravity

(1) Three puzzles
(2) Dyonic $\operatorname{ISO}(7)$ supergravity
(3) Consistent truncation of massive type IIA on S^{6}
(4) AdS_{4} solutions of massive IIA
(5) Further discussion

The $D=4 \mathcal{N}=8$ tensor hierarchy

The bosonic fields of $D=4 \mathcal{N}=8$ supergravity come in irreps of $E_{7(7)}$. The p-forms, $p=1,2,3,4$, generate a 'tensor hierarchy'. [de Wit, Nicolai, Samtleben '08]

$\mathbf{1}$	metric :	$d s_{4}^{2}$
$\mathbf{5 6}$	coset representatives :	$\mathcal{V}_{\mathbb{M}}{ }^{i j}$,
$\mathbf{5 6}$	vectors :	$\mathcal{A}^{\mathbb{M}}$,
$\mathbf{1 3 3}$	two-forms :	\mathcal{B}_{α},
$\mathbf{9 1 2}$	three-forms :	$\mathcal{C}_{\alpha}{ }^{\mathbb{M}}$,
$\mathbf{1 3 3 + \mathbf { 8 6 4 5 }}$	four-forms	

The $D=4 \mathcal{N}=8$ duality hierarchy

The higher-rank forms carry dynamical degrees of freedom, albeit not independent ones. They can be expressed in terms of the lower-rank forms, scalars and metric via the 'duality hierarchy' [Bergshoeff, Hartong, Hohm, Huebscher, Ortin '09]

$$
\begin{aligned}
\tilde{\mathcal{H}}_{(2) \Lambda} & =\mathcal{R}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Sigma}-\mathcal{I}_{\Lambda \Sigma} * \mathcal{H}_{(2)}^{\Sigma}, \\
\mathcal{H}_{(3) \alpha} & =-\frac{1}{12}\left(t_{\alpha}\right)_{\mathbb{M}^{\mathbb{P}}} \mathcal{M}_{\mathbb{N P}} * D \mathcal{M}^{\mathbb{M N}}, \\
\mathcal{H}_{(4) \alpha}{ }^{\mathbb{M}} & =-\frac{1}{84}\left(t_{\alpha}\right) \mathbb{P}^{\mathbb{R}} X_{\mathbb{N Q}} \mathbb{S}^{\mathbb{S}} \mathcal{M}^{\mathbb{M} \mathbb{N}}\left(\mathcal{M}^{\mathbb{P Q}} \mathcal{M}_{\mathbb{R S}}+7 \delta_{\mathbb{S}}^{\mathbb{P}} \delta_{\mathbb{R}}^{\mathbb{Q}}\right) \operatorname{vol}_{4} .
\end{aligned}
$$

The embedding tensor

In $\mathcal{N}=8$ supergravity, all effects of the gauging are codified in the embedding tensor $\Theta_{\mathbb{M}}{ }^{\alpha}$. [de Wit, Samtleben, Trigiante '07]

This is subject to

- quadratic constraints, which ensure the consistency of the gauging, and
- linear constraints, which restrict it to the 912 of $\mathrm{E}_{7(7)}$.

The dyonic $\operatorname{ISO}(7)$ embedding tensor

- To formulate the $\operatorname{ISO}(7)$ gauging, it is natural to branch out $\mathrm{E}_{7(7)}$ into $\mathrm{SL}(7)$, since

$$
\operatorname{ISO}(7) \equiv \mathrm{SO}(7) \ltimes \mathbb{R}^{7} \subset \mathrm{SL}(7) \ltimes \mathbb{R}^{7} \subset \mathrm{GL}(7) \ltimes \mathbb{R}^{7} \subset \mathrm{SL}(8) \subset \mathrm{E}_{7(7)}
$$

- The embedding tensor of dyonic $\operatorname{ISO}(7)$ supergravity takes values in the $\mathbf{2 8}+\mathbf{1}$ of $\mathrm{SL}(7)$:
[Dall'Agata, Inverso, '11]

$$
\Theta_{[A B]}^{C}{ }_{D}=2 \delta_{[A}^{C} \theta_{B] D} \quad, \quad \Theta^{[A B] C}{ }_{D}=2 \delta_{D}^{[A} \xi^{B] C} .
$$

where

$$
\theta=\operatorname{diag}\left(\mathbb{I}_{7}, 0\right), \quad \xi=\operatorname{diag}\left(0_{7}, 1\right)
$$

- The ISO(7)-covariant derivatives that follow from this are

$$
D=d-g \mathcal{A}^{I J} t_{[I}{ }^{K} \delta_{J] K}+\left(g \delta_{I J} \mathcal{A}^{I}-m \tilde{\mathcal{A}}_{J}\right) t_{8}{ }^{J} .
$$

A restricted duality hierarchy

For the $\operatorname{ISO}(7)$ gauging, a restricted duality hierarchy can be identified, still $\mathcal{N}=8$ but only SL(7)-covariant:

$$
\begin{array}{rrllll}
\mathbf{1} & \text { metric : } & d s_{4}^{2} & \\
\mathbf{2 1}^{\prime}+\mathbf{7}^{\prime}+\mathbf{2 1}+\mathbf{7} & \text { coset representatives : } & \mathcal{V}^{I J i j}, \mathcal{V}^{I 8 i j}, \tilde{\mathcal{V}}_{I J}^{i j}, \tilde{\mathcal{V}}_{I 8}{ }^{i j}, \\
\mathbf{2 1} \mathbf{1}^{\prime}+\mathbf{7}^{\prime}+\mathbf{2 1}+\mathbf{7} & \text { vectors : } & \mathcal{A}^{I J}, \quad \mathcal{A}^{I}, \quad \tilde{\mathcal{A}}_{I J}, \quad \tilde{\mathcal{A}}_{I}, \\
\mathbf{4 8}+\mathbf{7}^{\prime} & \text { two-forms : } & \mathcal{B}_{I}^{J}, \quad \mathcal{B}^{I}, & \\
\mathbf{2 8}^{\prime} & \text { three-forms : } & \mathcal{C}^{I J} . &
\end{array}
$$

A restricted duality hierarchy

This restricted duality hierarchy has closed supersymmetry transformations and field equations. For example, the Bianchi identities close into

$$
\begin{aligned}
& D \mathcal{H}_{(2)}^{I J}=0, D \mathcal{H}_{(2)}^{I}=m \mathcal{H}_{(3)}^{I}, D \tilde{\mathcal{H}}_{(2) I J}=-2 g \mathcal{H}_{(3)[I}^{K} \delta_{J] K}, \quad D \tilde{\mathcal{H}}_{(2) I}=g \delta_{I J} \mathcal{H}_{(3)}^{J}, \\
& D \mathcal{H}_{(3) I}^{J}=\mathcal{H}_{(2)}^{J K} \wedge \tilde{\mathcal{H}}_{(2) I K}+\mathcal{H}_{(2)}^{J} \wedge \tilde{\mathcal{H}}_{(2) I}-2 g \delta_{I K} \mathcal{H}_{(4)}^{J K}-\frac{1}{7} \delta_{I}^{J} \text { (trace)}, \\
& D \mathcal{H}_{(3)}^{I}=-\mathcal{H}_{(2)}^{I J} \wedge \tilde{\mathcal{H}}_{(2) J}, \quad D \mathcal{H}_{(4)}^{I J} \equiv 0 .
\end{aligned}
$$

A restricted duality hierarchy

The duality relations close into

$$
\begin{aligned}
\tilde{\mathcal{H}}_{(2) I J} & =-\frac{1}{2} \mathcal{I}_{[I J][K L]} * \mathcal{H}_{(2)}^{K L}-\mathcal{I}_{[I J][K 8]} * \mathcal{H}_{(2)}^{K}+\frac{1}{2} \mathcal{R}_{[I J][K L]} \mathcal{H}_{(2)}^{K L}+\mathcal{R}_{[I J][K 8]} \mathcal{H}_{(2)}^{K}, \\
\tilde{\mathcal{H}}_{(2) I} & =-\frac{1}{2} \mathcal{I}_{[I 8][K L]} * \mathcal{H}_{(2)}^{K L}-\mathcal{I}_{[I 8][K 8]} * \mathcal{H}_{(2)}^{K}+\frac{1}{2} \mathcal{R}_{[I 8][K L]} \mathcal{H}_{(2)}^{K L}+\mathcal{R}_{[I 8][K 8]} \mathcal{H}_{(2)}^{K}, \\
\mathcal{H}_{(3) I}{ }^{J} & =-\frac{1}{12}\left(t_{I}{ }^{J}\right)_{\mathbb{M}^{\mathbb{P}}} \mathcal{M}_{\mathbb{N P}} * D \mathcal{M}^{\mathbb{M N}}-\frac{1}{7} \delta_{I}^{J}(\text { trace }), \\
\mathcal{H}_{(3)}^{I} & =-\frac{1}{12}\left(t_{8}{ }^{I}\right)_{\mathbb{M}^{\mathbb{P}}} \mathcal{M}_{\mathbb{N P}} * D \mathcal{M}^{\mathbb{M N}}, \\
\mathcal{H}_{(4)}^{I J} & =\frac{1}{84} X_{\mathbb{N}} \mathbb{Q}^{\mathbb{S}}\left(\left(t_{K}(I \mid)_{\mathbb{P}^{\mathbb{R}}} \mathcal{M}^{\mid J) K \mathbb{N}}+\left(t_{8}^{(I \mid}\right) \mathbb{P}^{\mathbb{R}} \mathcal{M}^{\mid J) 8 \mathbb{N}}\right)\left(\mathcal{M}^{\mathbb{P Q}} \mathcal{M}_{\mathbb{R S}}+7 \delta_{\mathbb{S}}^{\mathbb{P}} \delta_{\mathbb{R}}^{\mathbb{Q}}\right) \operatorname{vol}_{4} .\right.
\end{aligned}
$$

Supersymmetric critical points

The dyonic $\operatorname{ISO}(7)$ gauging displays a rich structure of critical points, both supersymmetric and non-supersymmetric, all of them AdS. In contrast, the purely electric gauging has no known vacua.

SUSY	bos. sym.	ref.
$\mathcal{N}=3$	$\mathrm{SO}(4)$	[Gallerati, Samtleben, Trigiante '14]
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	[Guarino, Jafferis, OV '15]
$\mathcal{N}=1$	G_{2}	[Borghese, Guarino, Roest' '12]
$\mathcal{N}=1$	$\mathrm{SU}(3)$	[Guarino, ov '15]

Consistent truncation of massive type IIA on S^{6}

(1) Three puzzles
(2) Dyonic $\mathrm{ISO}(7)$ supergravity
(3) Consistent truncation of massive type IIA on S^{6}
(4) AdS_{4} solutions of massive IIA
(5) Further discussion

The strategy

In order to find the full embedding of dyonic ISO(7) supergravity in massive IIA, we follow two steps:

- We adapt the de Wit-Nicolai $D=11$ approach to IIA. The IIA bosonic and fermionic field content and supersymmetry transformations are rewritten with $\mathrm{SO}(1,3) \times \mathrm{SL}(7)$ and $\mathrm{SO}(1,3) \times \mathrm{SU}(8)$ covariance.
- We develop a new technique: exploit the $D=4$ restricted duality hierarchy.

Type IIA with only $\mathrm{SO}(1,3)$ manifest

Under

$$
\mathrm{SO}(1,9) \rightarrow \mathrm{SO}(1,3) \times \mathrm{SO}(6)
$$

the IIA fields split as

$$
\begin{aligned}
d \hat{s}_{10}^{2}= & \Delta^{-1} d s_{4}^{2}+g_{m n}\left(d y^{m}+B^{m}\right)\left(d y^{n}+B^{n}\right) \\
\hat{A}_{(3)}= & \frac{1}{6} A_{\mu \nu \rho} d x^{\mu} \wedge d x^{\nu} \wedge d x^{\rho}+\frac{1}{2} A_{\mu \nu m} d x^{\mu} \wedge d x^{\nu} \wedge\left(d y^{m}+B^{m}\right) \\
& +\frac{1}{2} A_{\mu m n} d x^{\mu} \wedge\left(d y^{m}+B^{m}\right) \wedge\left(d y^{n}+B^{n}\right) \\
& +\frac{1}{6} A_{m n p}\left(d y^{m}+B^{m}\right) \wedge\left(d y^{n}+B^{n}\right) \wedge\left(d y^{p}+B^{p}\right), \\
\hat{B}_{(2)}= & \frac{1}{2} B_{\mu \nu} d x^{\mu} \wedge d x^{\nu}+B_{\mu m} d x^{\mu} \wedge\left(d y^{m}+B^{m}\right)+\frac{1}{2} B_{m n}\left(d y^{m}+B^{m}\right) \wedge\left(d y^{n}+B^{n}\right), \\
\hat{A}_{(1)}= & A_{\mu} d x^{\mu}+A_{m}\left(d y^{m}+B^{m}\right)
\end{aligned}
$$

Type IIA with only $\mathrm{SO}(1,3)$ manifest

- $\mathrm{SO}(6)$ can by straightforwardly promoted to $\mathrm{SL}(6)$. Then we have the $\mathrm{SO}(1,3)$-covariant field content in SL(6) representations:

$$
\begin{array}{rll}
\mathbf{1} & \text { metric : } & d s_{4}^{2}, \\
\mathbf{2 1 + 6}+\mathbf{1}+\mathbf{2 0}+\mathbf{1 5} & \text { scalars : } & g_{m n}, A_{m}, \hat{\phi}, A_{m n p}, B_{m n}, \\
\mathbf{6}^{\prime}+\mathbf{1}+\mathbf{1 5}+\mathbf{6} & \text { vectors : } & B_{\mu}{ }^{m}, A_{\mu}, A_{\mu m n}, B_{\mu m}, \\
\mathbf{6 + 1} & \text { two-forms : } & A_{\mu \nu m}, B_{\mu \nu}, \\
\mathbf{1} & \text { three-form : } & A_{\mu \nu \rho} .
\end{array}
$$

- These can be grouped up into $\mathrm{SL}(7)$ irreps, too.

Non-linear redefinitions

Further redefinitions are needed so that the p-forms comply with the $D=4$ transformations dictated by the tensor hierarchy:

- Vectors:

$$
C_{\mu}{ }^{m 8} \equiv B_{\mu}{ }^{m}, \quad C_{\mu}{ }^{78} \equiv A_{\mu}, \quad \tilde{C}_{\mu m n} \equiv A_{\mu m n}-A_{\mu} B_{m n}, \quad \tilde{C}_{\mu m 7} \equiv B_{\mu m}
$$

- Two-forms:

$$
C_{\mu \nu m} \equiv-A_{\mu \nu m}+C_{[\mu}{ }^{n 8} \tilde{C}_{\nu] n m}+C_{[\mu}{ }^{78} \tilde{C}_{\nu] m 7}, \quad C_{\mu \nu 7} \equiv-B_{\mu \nu}+C_{[\mu}^{m 8} \tilde{C}_{\nu] m 7},
$$

- Three-form:

$$
C_{\mu \nu \rho} \equiv A_{\mu \nu \rho}-C_{[\mu}{ }^{m 8} C_{\nu}{ }^{n 8} \tilde{C}_{\rho] m n}+C_{[\mu}{ }^{m 8} C_{\nu}{ }^{78} \tilde{C}_{\rho] m 7}+3 C_{[\mu}{ }^{78} C_{\nu \rho] 7}
$$

Similar redefinitions were first considered in type IIB. [Ciceri, de Wit, OV '14; Samtleben, Hohm '15]

KK ansatz and consistency of the truncation

The KK ansatz naturally relates the SL(6)-covariant IIA field content to the restricted tensor hierarchy for the $\operatorname{ISO}(7)$ gauging and quantities on S^{6} :

- Vectors:

$$
\begin{array}{lll}
C_{\mu}{ }^{m 8}(x, y)=\frac{1}{2} g K_{I J}^{m}(y) \mathcal{A}_{\mu}{ }^{I J}(x) \quad, \quad & C_{\mu}{ }^{78}(x, y)=-\mu_{I}(y) \mathcal{A}_{\mu}{ }^{I}(x), \\
\tilde{C}_{\mu m n}(x, y)=\frac{1}{4} K_{m n}^{I J}(y) \tilde{\mathcal{A}}_{\mu I J}(x) \quad, \quad \tilde{C}_{\mu m 7}(x, y)=-g^{-1}\left(\partial_{m} \mu^{I}\right)(y) \tilde{\mathcal{A}}_{\mu I}(x),
\end{array}
$$

- Two-forms:

$$
C_{\mu \nu m}(x, y)=-g^{-1}\left(\mu_{I} \partial_{m} \mu^{J}\right)(y) \mathcal{B}_{\mu \nu J}{ }^{I}(x) \quad, \quad C_{\mu \nu 7}(x, y)=\mu_{I}(y) \mathcal{B}_{\mu \nu}{ }^{I}(x)
$$

- Three-form:

$$
C_{\mu \nu \rho}(x, y)=\left(\mu_{I} \mu_{J}\right)(y) \mathcal{C}_{\mu \nu \rho}{ }^{I J}(x),
$$

- Similarly with the metric, scalars and fermions.

When these ansatze are introduced into the SL(7)-covariant IIA susy transformations, the S^{6} dependence drops out and the susy transformations of the restricted $D=4$ hierarchy arise,

The full non-linear embedding

$$
\begin{aligned}
d \hat{s}_{10}^{2}= & \Delta^{-1} d s_{4}^{2}+g_{m n} D y^{m} D y^{n} \\
\hat{A}_{(3)}= & \mu_{I} \mu_{J}\left(\mathcal{C}^{I J}+\mathcal{A}^{I} \wedge \mathcal{B}^{J}+\frac{1}{6} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L} \wedge \tilde{\mathcal{A}}_{K L}+\frac{1}{6} \mathcal{A}^{I} \wedge \mathcal{A}^{J K} \wedge \tilde{\mathcal{A}}_{K}\right) \\
& +g^{-1}\left(\mathcal{B}_{J}^{I}+\frac{1}{2} \mathcal{A}^{I K} \wedge \tilde{\mathcal{A}}_{K J}+\frac{1}{2} \mathcal{A}^{I} \wedge \tilde{\mathcal{A}}_{J}\right) \wedge \mu_{I} D \mu^{J}+\frac{1}{2} g^{-2} \tilde{\mathcal{A}}_{I J} \wedge D \mu^{I} \wedge D \mu^{J} \\
& -\frac{1}{2} \mu_{I} B_{m n} \mathcal{A}^{I} \wedge D y^{m} \wedge D y^{n}+\frac{1}{6} A_{m n p} D y^{m} \wedge D y^{n} \wedge D y^{p} \\
\hat{B}_{(2)}= & -\mu_{I}\left(\mathcal{B}^{I}+\frac{1}{2} \mathcal{A}^{I J} \wedge \tilde{\mathcal{A}}_{J}\right)-g^{-1} \tilde{\mathcal{A}}_{I} \wedge D \mu^{I}+\frac{1}{2} B_{m n} D y^{m} \wedge D y^{n} \\
\hat{A}_{(1)}= & -\mu_{I} \mathcal{A}^{I}+A_{m} D y^{m} .
\end{aligned}
$$

Here, the covariant derivatives are

$$
D y^{m} \equiv d y^{m}+\frac{1}{2} g K_{I J}^{m} \mathcal{A}^{I J} \quad, \quad D \mu^{I} \equiv d \mu^{I}-g \mathcal{A}^{I J} \mu_{J}
$$

The full non-linear embedding

The internal (inverse) metric and forms are given in terms of SL(7)-covariant blocks of the $D=4$ scalar matrix $\mathcal{M}_{\mathbb{M N}}$ and S^{6} quantities as

$$
\begin{aligned}
g^{m n} & =\frac{1}{4} g^{2} \Delta K_{I J}^{m} K_{K L}^{n} \mathcal{M}^{I J}{ }^{K L} \\
A_{m} & =\frac{1}{2} g \Delta g_{m n} K_{I J}^{n} \mu_{K} \mathcal{M}^{I J} K 8 \\
B_{m n} & =-\frac{1}{2} \Delta g_{m p} K_{I J}^{p} \partial_{n} \mu^{K} \mathcal{M}^{I J}{ }_{K 8}, \\
A_{m n p} & =A_{m} B_{n p}+\frac{1}{8} g \Delta g_{m q} K_{I J}^{q} K_{n p}^{K L} \mathcal{M}^{I J}{ }_{K L} .
\end{aligned}
$$

Field strengths

The embedding can be given in terms of independent $D=4$ degrees of freedom.

- Compute the field strengths using their type IIA definitions:

$$
\begin{aligned}
& \hat{F}_{(4)}=\mu_{I} \mu_{J} \mathcal{H}_{(4)}^{I J}+g^{-1} \mathcal{H}_{(3) J}{ }^{I} \wedge \mu_{I} D \mu^{J}+\frac{1}{2} g^{-2} \tilde{\mathcal{H}}_{(2) I J} \wedge D \mu^{I} \wedge D \mu^{J}+\ldots, \\
& \hat{H}_{(3)}=-\mu_{I} \mathcal{H}_{(3)}^{I}-g^{-1} \tilde{\mathcal{H}}_{(2) I} \wedge D \mu^{I}+\ldots, \\
& \hat{F}_{(2)}=-\mu_{I} \mathcal{H}_{(2)}^{I}+g^{-1}\left(g \delta_{I J} \mathcal{A}^{J}-m \tilde{\mathcal{A}}_{I}\right) \wedge D \mu^{I}+\ldots,
\end{aligned}
$$

Here, $\mathcal{H}_{(4)}^{I J}$, etc., turn out to be the field strengths of the restricted $D=4$ duality hierarchy.

- These field strengths are now regarded as short-hand for the corresponding $D=4$ dualised expressions.

The Freund-Rubin term

- An elegant expression can be found for the Freund Rubin term using the duality condition for $\mathcal{H}_{(4)}^{I J}$. It can be written as $\hat{F}_{(4)}=U$ vol $_{4}$, where

$$
U=-\frac{g}{84} X_{\mathbb{M} \mathbb{P}}^{\prime \mathbb{R}} X_{\mathbb{N Q}} \mathcal{M}^{\mathbb{M N}}\left(\mathcal{M}^{\mathbb{P Q}} \mathcal{M}_{\mathbb{R} \mathbb{S}}+7 \delta_{\mathbb{S}}^{\mathbb{P}} \delta_{\mathbb{R}}^{\mathbb{Q}}\right)
$$

closely parallels the scalar potential of $D=4 \mathcal{N}=8$ gauged supergravity

$$
V=\frac{g^{2}}{168} X_{\mathbb{M} \mathbb{P}}^{\mathbb{R}} X_{\mathbb{N Q}} \mathbb{S}^{\mathbb{S}} \mathcal{M}^{\mathbb{M N}}\left(\mathcal{M}^{\mathbb{P Q}} \mathcal{M}_{\mathbb{R} \mathbb{S}}+7 \delta_{\mathbb{S}}^{\mathbb{P}} \delta_{\mathbb{R}}^{\mathbb{Q}}\right)
$$

- $X_{\mathbb{M}}^{\prime}{ }^{\mathbb{P}}=\Theta_{\mathbb{M}}^{\prime}{ }^{\alpha}\left(t_{\alpha}\right)_{\mathbb{N}}{ }^{\mathbb{P}}$ is defined in terms of an S^{6}-dependent $\Theta_{\mathbb{M}}^{\prime}{ }^{\alpha}$, with

$$
\Theta_{[A B] D}^{\prime}{ }_{D}^{C}=2 \delta_{[A}^{C} \theta_{B] D}^{\prime} \quad, \quad \Theta^{\prime[A B] C}{ }_{D}=2 \delta_{D}^{[A} \xi^{\prime B] C},
$$

and

$$
\theta_{I J}^{\prime}=\mu_{I} \mu_{J}, \quad \theta_{I 8}^{\prime}=0, \quad \theta_{88}^{\prime}=0 ; \quad \xi^{\prime A B}=0
$$

AdS_{4} solutions of massive IIA

(1) Three puzzles
(2) Dyonic $\operatorname{ISO}(7)$ supergravity
(3) Consistent truncation of massive type IIA on S^{6}
(4) AdS_{4} solutions of massive IIA
(5) Further discussion

Uplift of supersymmetric critical points

- By the consistency of the truncation, all solutions of the $D=4$ supergravity give rise to solutions of massive type IIA. In particular, the (AdS) critical points uplift to $\mathrm{AdS}_{4} \times S^{6}$ solutions of massive IIA.

SUSY	bos. sym.	ref.
$\mathcal{N}=3$	$\mathrm{SO}(4)$	[Pang, Rong '15]
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	[Guarino, Jafferis, OV '15]
$\mathcal{N}=1$	G_{2}	[Behrndt, Cvetic '04]
$\mathcal{N}=1$	$\mathrm{SU}(3)$	[OV '15]

- Will focus on susy solutions, but we also find new and previously known non-susy ones. In particular, we recover a non-susy solution first discussed by [Lüst, Marchesano, Martucci, Tsimpis $\left.{ }^{\prime} 08\right]$ We find this solution to be perturbatively stable.

AdS_{4} solutions with at least $\mathrm{SU}(3)$ symmetry

- The solutions typically have $\mathrm{SU}(3) \times \mathrm{SU}(3)$-structure [Lüst, Tsimpis '09]
- Locally, S^{6} is foliated with S^{5} leaves. The S^{5} is equipped with its usual Sasaki-Einstein structure $(\boldsymbol{J}, \boldsymbol{\Omega}, \boldsymbol{\eta})$. The solutions thus generalise to arbitrary Sasaki-Einstein.
- For the G_{2}-invariant solution, the $\mathrm{SU}(3) \times \mathrm{SU}(3)$-structure reduces to and $\mathrm{SU}(3)$ structure. $(\boldsymbol{J}, \boldsymbol{\Omega}, \boldsymbol{\eta})$ conspire to produce the nearly-Kähler structure (\mathcal{J}, Ω) on S^{6} :

$$
\begin{aligned}
& \mathcal{J}=\sin ^{2} \alpha \cos \alpha \boldsymbol{J}+\sin ^{3} \alpha \operatorname{Re} \boldsymbol{\Omega}+\sin \alpha d \alpha \wedge \boldsymbol{\eta} \\
& \operatorname{Re} \Omega=-\sin ^{3} \alpha \boldsymbol{J} \wedge d \alpha+\sin ^{2} \alpha \cos \alpha \operatorname{Re} \boldsymbol{\Omega} \wedge d \alpha-\sin ^{3} \alpha \operatorname{Im} \boldsymbol{\Omega} \wedge \boldsymbol{\eta} \\
& \operatorname{Im} \Omega=-\sin ^{4} \alpha \boldsymbol{J} \wedge \boldsymbol{\eta}+\sin ^{3} \alpha \cos \alpha \operatorname{Re} \boldsymbol{\Omega} \wedge \boldsymbol{\eta}+\sin ^{2} \alpha \operatorname{Im} \boldsymbol{\Omega} \wedge d \alpha
\end{aligned}
$$

AdS_{4} solutions with at least $\mathrm{SU}(3)$ symmetry

- The $\mathcal{N}=2$ solution is the first explicit, analytically known solution in this class.
- The solutions are typically cohomogeneity-one. All previously known $\mathcal{N}=1$ solutions are have $\mathrm{SU}(3)$-structure and are homogeneous. These include:
- Nearly-Kähler [Behrndt, Cvetic '04]
- Half-flat [Koerber, Lüst, Tsimpis '08; Tomasiello '07]
- This does not exclude the existence of inhomogeneous solutions in the $\mathrm{SU}(3)$-structure class. Numerical evidence of nearly-Kähler metrics has been recently found [Foscolo,

```
Haskins '15 ]
```

- Also recently, other $\mathcal{N}=1$, cohomogeneity-one AdS_{4} solutions with $\mathrm{SU}(3) \times \mathrm{SU}(3)$-structure have been constructed [Rota, Tomasiello ' 15 ; Apruzzi, Fazzi, Passias, Tomasiello '15]

An $\mathcal{N}=2 \mathrm{AdS}_{4}$ solution of massive IIA

$$
\begin{aligned}
& d \hat{s}_{10}^{2}=L^{2}(3+\cos 2 \alpha)^{1 / 2}(5+\cos 2 \alpha)^{1 / 8}\left[d s^{2}\left(\mathrm{AdS}_{4}\right)+\frac{3}{2} d \alpha^{2}+\frac{6 \sin ^{2} \alpha}{3+\cos 2 \alpha} d s^{2}\left(\mathbb{C P}^{2}\right)+\frac{9 \sin ^{2} \alpha}{5+\cos 2 \alpha} \boldsymbol{\eta}^{2}\right] \\
& e^{\hat{\phi}}=e^{\phi_{0}} \frac{(5+\cos 2 \alpha)^{3 / 4}}{3+\cos 2 \alpha} \\
& L^{-2} e^{-\frac{1}{2} \phi_{0}} \hat{H}_{(3)}=24 \sqrt{2} \frac{\sin ^{3} \alpha}{(3+\cos 2 \alpha)^{2}} \boldsymbol{J} \wedge d \alpha \\
& L^{-3} e^{\frac{1}{4} \phi_{0}} \hat{F}_{(4)}=6 \operatorname{vol}(\mathrm{AdS})+12 \sqrt{3} \frac{7+3 \cos 2 \alpha}{(3+\cos 2 \alpha)^{2}} \sin ^{4} \alpha \operatorname{vol}\left(\mathbb{C P}^{2}\right) \\
& \quad+18 \sqrt{3} \frac{(9+\cos 2 \alpha) \sin 3}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J} \wedge d \alpha \wedge \boldsymbol{\eta}, \\
& L^{-1} e^{\frac{3}{4} \phi_{0}} \hat{F}_{(2)}=-4 \sqrt{6} \frac{(3+\cos 2 \alpha)(5+\cos 2 \alpha)}{\left(3+\sin -3 \sqrt{6} \frac{(3-\cos 2 \alpha)}{(5+\cos 2 \alpha)^{2}} \sin \alpha d \alpha \wedge \boldsymbol{\eta}\right.}
\end{aligned}
$$

Flux quantisation

- On our topologically S^{6} solution, one can only impose quantisation conditions on $\hat{F}_{(0)}$ and $\hat{F}_{(6)}$:

$$
\begin{aligned}
k & =2 \pi \ell_{s} \hat{F}_{(0)} \equiv 2 \pi \ell_{s} m \\
N & =-\frac{1}{\left(2 \pi \ell_{s}\right)^{5}} \int_{S^{6}} e^{\frac{1}{2} \hat{\phi}} \hat{*} \hat{F}_{(4)}+\hat{B}_{(2)} \wedge d \hat{A}_{(3)}+\frac{1}{6} m \hat{B}_{(2)} \wedge \hat{B}_{(2)} \wedge \hat{B}_{(2)}
\end{aligned}
$$

- The classical parameters g and m (or $L, e^{\phi_{0}}$) become fixed in terms of the quantum numbers k, N.

The dual CFT_{3}

- These backgrounds should arise as the near horizon of D2-branes on a smooth space with RR and NS fluxes.
- The presence of the Romans mass adds $(\mathcal{N}=2)$ Chern-Simons terms at level k to maximal 3D super-Yang-Mills with gauge group $\mathrm{SU}(N)$.
- Three adjoint chirals with $\mathcal{W}=\operatorname{Tr}(X[Y, Z]), \mathrm{SU}(3)$ flavour and $\mathrm{U}(1)$ R-symmetry.

AdS/CFT match of the free energy

We have independently computed the free energy of the above $\mathcal{N}=2$ solution and in the candidate dual field theory.

- On the gravity side, the free energy is given by

$$
F=\frac{16 \pi^{3}}{\left(2 \pi \ell_{s}\right)^{8}} \int_{S^{6}} e^{8 A} \mathrm{vol}_{6}=\frac{\pi}{5} 2^{1 / 3} 3^{1 / 6} N^{5 / 3} k^{1 / 3}
$$

where $e^{2 A}$ is the warp factor.

- On the field theory side, the free energy is computed by localisation to a solvable matrix model. The result matches the supergravity result! See also [Fluder, Sparks '15]

This provides the first $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ test in the context of massive type IIA string theory.

Further discussion

(1) Three puzzles
(2) Dyonic $\operatorname{ISO}(7)$ supergravity
(3) Consistent truncation of massive type IIA on S^{6}
(4) AdS_{4} solutions of massive IIA
(5) Further discussion

Our new results in a wider context

- The Romans mass has long been known to induce magnetic gaugings in $D=4$. [Polchinski, Strominger '95; Louis, Micu '02] Our result is a certain $\mathcal{N}=8$ extension.
- Different arguments single out the usual $D=11$ and IIB truncations on S^{7}, S^{4} and S^{5}.
[Nastase, Vaman '00; Cvetic, Lu, Pope '00; Lee, Strickland-Constable, Waldram '14; Samtleben, Hohm '14]
These arguments seem to miss massive IIA on S^{6}.
- The latter truncation is arguably different, in that dyonic ISO(7) supergravity doesn't have an $\mathcal{N}=8 \mathrm{AdS}$ vacuum that uplifts to a maximally supersymmetric $\operatorname{AdS}_{4} \times S^{6}$ massive IIA background.

Yet, an $\mathcal{N}=8$ truncation does exist at the level of the supergravities.

Our new results in a wider context

- Massless type IIA was conjectured in [Hull, Warner '88] to truncate consistently on S^{6} to the purely electric $(m=0) \mathrm{ISO}(7)$ gauging of [Hull, Warner '84]

Our consistency proof is independent of the Romans mass. We thus prove that conjecture, too.

- We gave the full embedding of the $D=4$ theory in $D=10$ by exploiting the restricted tensor and duality hierarchies. In comparison, for $D=11$ on S^{7}, only the non-linear embedding of the scalars is known -the embedding of the vectors is only known at the linear level.

Our new results in a wider context

- Massive IIA on $S^{6}=\mathrm{G}_{2} / \mathrm{SU}(3)$ admits a different, $\mathcal{N}=2$ truncation when S^{6} is equipped with its G_{2}-invariant nearly-Kähler structure. [Kashani-Poor '07] This is analogous to M-theory on Sasaki-Einstein. [Gauntlett,OV '07]
- The $\mathcal{N}=8$ truncation retains modes at the bottom of the KK towers about the AdS vacua.
- The $\mathcal{N}=2$ truncation retains modes up the KK towers about the AdS vacua.
- Both truncations have a common sector: the $\mathcal{N}=1, G_{2}$-invariant sector of the $\mathcal{N}=8$ theory.
- A certain $\mathcal{N}=1$ subsector of dyonic $\operatorname{ISO}(7)$ supergravity is described by a superpotential

$$
W=-g\left(2+6 T^{2} U^{2}+6 S T U^{2}\right)+2 m U^{3},
$$

which contains non-geometric terms. This model, however, enjoys a perfectly geometric origin in massive IIA on S^{6}.

Thank you!

