

Network Monitoring at Glasgow

David Crooks david.crooks@glasgow.ac.uk

Context

- Previously used Cacti; this had gone through different iterations
- Transition between networking stacks/topologies
- New solution to co-exist with then existent graphite stack

Requirements

- Reflect current network configuration
- Confidence (or at least understanding) of network bandwidth calculation
- Interest in looking at inputs to graphite (and others)

Constituent parts

- Python script
- SNMP
- Graphite/Grafana

Crosschecks

- Campus network monitoring
- Ganglia host monitoring

Setup

- At Glasgow manage switches on separate VLAN; add additional network port to monitoring box configured to that VLAN
- used snmpwalk to probe device, and determine appropriate OIDs (Object IDentifiers)

```
ifHCInOctets
```

ifHCOutOctets

sysUpTimeInstance

Process

- Define switches
- Loop through switches and record counter value for t₀; sleep; repeat; calculate bandwidths
- Split out specific values for known switch ports
- Package messages for graphite

Results

- Benefit in this case is specific data for our topology, extract exactly what we need:
 - WAN in/out
 - Access switch layer (1Gbps)
 - EAPS domain (core network ring)

Results

EAPS (Core ring)

Host networking

Access switches

WAN

Conclusions

- Custom network script used for interest and research purposes
- Lightweight
- Match requirements to our topology
- Designed as add-on to existing monitoring stack
- Non-specific version can be made available

