

Accelerated Computing Service in PPD at RAL

Abdeslem DJAOUI

PPD

RAL

Outline

- Motivations and aims
- What we did at RAL in the last 5 years
- Our plan for the near future

Computer performance until ~ 2000

- CPU frequency doubled every 22 months
 - Memory capacity also increased
 - Applications run faster without any code change
 - Program once, just sit and wait for better computers
- But power dissipation: $P \sim CV^2f$
 - Power became unsustainable as f increased
 - ~ 4GHz ceiling even with best cooling technologies
- CPU vendors looked for more performance
 - by other means than increasing frequency
 - but without increasing power dissipation

The move to multi-core from 2000

- Rule of thumb based on : $P \sim CV^2f$ 15% ψ in V results in: 15% ψ in f, 50% ψ in P, 10% ψ in Perf
 - 1 core: (area 1, V=1, f=1 \rightarrow P=1, P=1)
 - \blacksquare 2 cores: (area 2, <u>V=0.85</u>, f=0.85 → P=1, Perf=1.8)
- Todays CPUs (up to ~ 20 cores)

- But change to multicore is at price for applications
 - Multithreaded versions needed to exploit added Perf
 - Amdhal's law (even 5% sequential, 20x theoretical speed up)
 - Move to parallel programming tedious compared to sequential
 - Need synchronizations mechanisms (locks) to avoid race conditions
 - Programmer has to avoid thread deadlocks

Then the advent of co-processor accelerators

- GPGPU: even more cores (1000's)
 - Simpler cores
 - Suitable for data parallel algorithms (small sequential part)
 - Now have heterogeneous architecture: CPU+ Accelerator
 - Run App on CPU, offload data parallel work to accelerator
 - Many dissimilar accelerator architectures exist
- Harder life for the programmer
 - Big new concern in architecture
 - Which accelerator to target?
 - Big new concerns in the programming
 - Multiple programming models needed
 - CUDA, OpenCL, ...

Other co-processors on offer

- Intel Xeon Phi
 - Different architecture model from GPUs
 - Application portability to/from GPUs not always possible
- FPGAs: Another way to get more more performance per Watt
 - FPGA also better performance per Watt than GPUs
 - Not a processor at all unlike CPUs and GPUs
 - A Plate of reconfigurable logic cells with programmable interconnects
 - Can implement any logic function (in hardware, not software)
- Much harder life for the programmer

- Huge new concern in architecture and programming
- Programmer has to decide what to implement in hardware
- New considerations (hardware replication versus pipelining, ...)

Consequences of these disruptive computing technologies

- Users need early access to gain competitive advantage
 - Access to the new hardware is difficult (cost, availability)
 - No expertise in associated models and tools
- A shared focused service could enable
 - Access for evaluation/prototyping for early adopters
 - Ready to use platforms with reliable support/expertise
 - A development environment following evaluation
 - A learning platform for new commers

Our first GPU in PPD five years ago

- In 2010 ATLAS needed evaluation of GPUs for HLT
 - We acquired a system with a NIVIDIA Tesla C2050
 - Used by ATLAS PPD and Collaborators at Oxford
 - Started with small prototype, which became a full project
 - Eventually moved to the bigger ATLAS testbed for the HLT tracking software
- Close collaboration with users was needed
 - To build the first prototype

Less frequent as programmers built expertise

Current resources following additional requirements in PPD

- HEPGPUW1 machine: (First GPU machine)
 - NVIDIA Tesla C2050 'Fermi' (448 GPU cores)
- HEPGPUW4: (OpenCL development on GPU)
 - AMD Firepro V9800 (1600 GPU cores)
- HEPGPW5 machine:
 - Xeon Phi co-processor (56 cores x 4-way hyperthreading)
- HEPACC01 server: (accessible to all PPD)
 - DUAL NVIDIA Tesla K40M GPU (2880 cores)

Use and in-house R&D

- Used by ATLAS/CMS for (mostly) online computing
 - Track reconstruction for L2 trigger (CUDA, OpenCL)
 - Region-of-interest data preparation (CUDA)
 - Statistical limit setting package (CUDA)
- A lot of summer students projects over the years
- In-house R&D activity
 - Benchmarking and application porting between devices
 - Evaluating OpenCL portability
 - Evaluation of OpenMP (4.0 offload)
 - The use of GPUs in Virtual Machines

GPUs in VM

- Two different uses of GPUs in Virtual environments
 - Desktop Virtualization
 - multiple users share one GPU
 - Our use case: dedicated GPUs per VM (GPU pass-through)
 - Directly connect GPU to VM through the Hypervisor
 - Then GPU not available to host or other VMs
- Virtualization testbed setup:
 - 2 GPU machine configurations
 - One without and One with Vmware ESXi Hypervisor (Type 1)
 - Same OS and tools on both

Applications from SHOC benchmark suite

VM with GPU pass-through effect on PCIe bandwidth

Apps

- Download (H2D)

 and readback (D2H)
 bandwidth of PCIe
 bus
- Sum Reduction includes kernel execution latency as well transfers

VM with GPU pass-through effect on app performance

<u>Apps</u>

- MaxFlops: Maximum throughput possible
- S3D: Chemical rates application for turbulent combustion
- S3D_dp_pcie: includes PCIe transfers overhead

In Planning

- Technology refresh needed every 3-4 years
 - In 2010: C2050 (448 cores, 1.15 GHz, 1TFLOP, 238W)
 - In 2014: K40 (2880 cores, 745 MHz, 4.28TFOPS, <u>235W</u>)
- A lot of interest in OpenCL/FPGA from experiments
 - OpenCL on FPGA already part of ATLAS 10 year plan
 - Expect similar roadmap to GPUs over many years
 - Promising times for reconfigurable computing (FPGA)
 - Intel acquisition of Altera and IBM/Xilinx partnership
 - New devices (CPU and FPGA on same chip)
 - Portable productive programming models
 - » OpenMP on FPGA???

Accelerated computing service beyond PPD

- In PPD the initiative has proved very effective in
 - Easing the path to productivity on new technologies
 - Enabling a competitive advantage
- Would like the same for the UK-wide HEP community
 - Not in competition with GRIDPP (but could be part of)
 - Not all Uni groups can secure access to early new technologies
 - Currently we could accommodate a couple of external users
 - More would require additional effort and resources
 - Some issues to think about: (authentication, file system, ...)
- Eventually could be open STFC-wide

Summary

- New disruptive technologies need a re-think of Computing services and support
- Early access to innovative for evaluation, prototyping and development should benefit the UK HEP community at large
 - Not just the bigger HEP groups
- RAL as a central Lab can take the lead in enabling this
- We would like ho hear from external users interested in any of the existing platfroms

