

Monitoring with InfluxDB & Grafana

Andrew Lahiff
HEP SYSMAN, Manchester
15th January 2016

Overview

- Introduction
- InfluxDB
- InfluxDB at RAL
- Example dashboards & usage of Grafana
- Future work

Monitoring at RAL

- Ganglia used at RAL
 - have ~ 89000 individual metrics
- Lots of problems
 - Plots don't look good
 - Difficult & time-consuming to make "nice" custom plots
 - we use Perl scripts, many are big, messy, complex, hard to maintain, generate hundreds of errors in httpd logs whenever someone looks at a plot
 - UI for custom plots is limited & makes bad plots anyway
 - gmond sometimes uses lots of memory & kills other things
 - doesn't handle dynamic resources well
 - not suitable for Ceph

A possible alternative

- InfluxDB + Grafana
 - InfluxDB is a time-series database
 - Grafana is a metrics dashboard
- Benefits
 - both are very easy to install
 - install rpm, then start the service
 - easy to put data into InfluxDB
 - easy to make nice plots in Grafana

Monitoring at RAL

Go from

Ganglia

to

Grafana

InfluxDB

- Time series database
- Written in Go no external depedencies
- SQL-like query language InfluxQL
- Distributed (or not)
 - can be run as a single node
 - can be run as a cluster for redundancy & performance
 - will come back to this later
- Data can be written into InfluxDB in many ways
 - REST
 - API (e.g. Python)
 - Graphite, collectd

InfluxDB

- Data organized by time series, grouped together into databases
- Time series can have zero to many points
- Each point consists of
 - time
 - a measurement
 - e.g. cpu_load
 - at least one key-value field
 - e.g. value=5
 - zero to many tags containing metadata
 - e.g. host=lcg1423.gridpp.rl.ac.uk

InfluxDB

Points written into InfluxDB using the line protocol format

```
<measurement>[,<tag-key>=<tag-value>...] <field-key>=<field-
value>[,<field2-key>=<field2-value>...] [timestamp]
```

Example for an FTS3 server

```
active transfers, host=lcgfts01, vo=atlas value=21
```

- Can write multiple points in batches to get better performance
 - this is recommended
 - example with 0.9.6.1-1 for 2000 points

• sequentially: 129.7s

• in a batch: **0.16s**

Retention policies

- Retention policy describes
 - duration: how long data is kept
 - replication factor: how many copies of the data are kept
 - only for clusters
- Can have multiple retention policies per database

Continuous queries

- An InfluxQL query that runs automatically & periodically within a database
- Mainly useful for downsampling data
 - read data from one retention policy
 - write downsampled data into another
- Example
 - database with 2 retention policies
 - 2 hour duration
 - keep forever
 - data with 1 second time resolution kept for 2 hours, data
 with 30 min time resolution kept forever
 - use a continuous query to aggregate the high time resolution data to 30 min time resolution

```
> use arc
Using database arc
> show measurements
name: measurements
name
arex heartbeat lastseen
jobs
```

```
> show tag keys from jobs
name: jobs
-----
tagKey
host
state
```

```
> show tag values from jobs with key=host
name: hostTagValues
-----
host
arc-ce01
arc-ce02
arc-ce03
arc-ce04
```

> select value, vo from active_transfers where
host='lcgfts01' and time > now() - 3m
name: active_transfers

time	value	VO
2016-01-14T21:25:02.143556502Z	100	cms
2016-01-14T21:25:02.143556502Z	7	cms/becms
2016-01-14T21:26:01.256006762Z	102	cms
2016-01-14T21:26:01.256006762Z	8	cms/becms
2016-01-14T21:27:01.455021342Z	97	cms
2016-01-14T21:27:01.455021342Z	7	cms/becms
2016-01-14T21:27:01.455021342Z	1	cms/dcms

InfluxDB at RAL

- Single node instance
 - VM with 8 GB RAM, 4 cores
 - latest stable release of InfluxDB (0.9.6.1-1)
 - almost treated as a 'production' service
- What data is being sent to it?
 - Mainly application-specific metrics
 - Metrics from FTS3, HTCondor, ARC CEs, HAProxy, MariaDB,
 Mesos, OpenNebula, Windows Hypervisors, ...
- Cluster instance
 - currently just for testing
 - 6 bare-metal machines (ex worker nodes)
 - recent nightly build of InfluxDB

InfluxDB at RAL

- InfluxDB resource usage over the past month
 - currently using 1 month retention policies (1 min time resolution)
 - CPU usage negligible so far

Sending metrics to InfluxDB

- Python scripts, using python-requests
- read InfluxDB host(s) from config file, for future cluster use
 - picks one at random, tries to write to it
 - if fails, picks another
 - **—** ...
- Alternatively, can just use curl:

```
curl -s -X POST "http://<hostname>:8086/write?db=test" -u
user:passwd --data-binary "data,host=srv1 value=5"
```

Telegraf

- Collects metrics & sends to InfluxDB
- Plugins for:
 - system (memory, load, CPU, network, disk, ...)
 - Apache, Elasticsearch, HAProxy, MySQL, Nginx, + many others

Example system metrics - Grafana

Grafana – data sources

Grafana – adding a database

Grafana – making a plot

Grafana – making a plot

Templating

Templating

Templating

Example dashboards

HTCondor

Negotiator — arc-ce01 — arc-ce02 — arc-ce03

- cymfs-alice - cymfs-atlas - cymfs-cms - cymfs-grid

10

arc-ce01 — arc-ce02 — arc-ce03 — arc-ce04

Mesos

FTS3

instance: production -

Databases

Ceph

Load testing InfluxDB

- Can a single InfluxDB node handle large numbers Telegraf instances sending data to it?
 - Telegraf configured to measure load, CPU, memory, swap, disk
 - testing done the night before my HEPiX Fall 2015 talk
 - 189 instances sending data each minute to InfluxDB 0.9.4 had problems
 - testing yesterday
 - 412 instances sending data each minute to InfluxDB 0.9.6.1-1
 no problems
 - couldn't try more ran out of resources & couldn't create any more Telegraf containers

Current limitations

- (Grafana) long duration plots can be quite slow
 - e.g. 1 month plot, using 1-min resolution data
 - Possible fix: people have requested that Grafana should be able to automatically select different retention policies depending on time interval
- (InfluxDB) No way to automatically downsample all measurements in a database
 - need to have a continuous query per measurement
 - Possible fix: people have requested that it should be possible to use regular expressions in continuous queries

Upcoming features

• Grafana – gauges & pie charts in progress

Future work

- Re-test clustering once it becomes stable/fully-functional
 - expected to be available in 0.10 at end of January
 - also new storage engine, query engine, ...
- Investigate Kapacitor
 - time-series data processing engine, real-time or batch
 - trigger events/alerts, or send processed data back to InfluxDB
 - anomoly detection from service metrics