CMS Electromagnetic Calorimeter

US CMS JTERM III
12 January 2009

Toyoko OrimotoCalifornia Institute of Technology

Outline

- Physics & Design Requirements
- Technology Choice
- ECAL Design & Readout
- Calibration & Monitoring
- Results with Cosmics Data
- Results with First Beam Data
- Conclusions

Physics Requirements: Discovery Potential

A light Higgs has not yet been excluded by current measurements, and we may be able to measure it at the LHC.

Current limit from electroweak measurements is $m_H > 114$ GeV.

At mass ~120 GeV, the Higgs decay into the diphoton channel presents a very promising yet challenging possibility.

Physics Requirements: Light Higgs

If such a low mass Higgs does exist, its natural width will very narrow.

For narrow resonances, the observed width will be determined by the instrumental mass resolution; that is, we will need the best possible calorimeter resolution to observe the Higgs in the diphoton channel.

Detector Energy Resolution

Energy resolution: corresponds to how well we reconstruct signals as a function of energy. The calorimeter energy resolution is determined by the following components:

The LHC Environment

The Large Hadron Collider

- 14 TeV proton proton collider
- Design Luminosity = 10³⁴ cm⁻² s⁻¹
- Bunch crossing (BX) rate 40 MHz (one BX every 25ns)
- Up to 20 p-p interactions and up to 1000 charged particles every BX
- Dose rates of 15 rad/h in Barrel & up to 1500 rad/h in Endcap

Detectors need to be:

- Fast
- High granular
- Radiation resistant

ECAL Design Requirements

Compact:

To fit inside the magnet

Hermetic:

- To measure missing E_T
- Good resolution up to lηl<2.5
- Coverage up to lηl<3

Energy range:

~0.1 – 1000 GeV

Fast:

- Pile-up
- Precise timing of signal

Excellent energy, angular resolution:

As motivated by physics studies

Stable:

- Accurate monitoring system
- Several different calibration procedures

Radiation resistant:

More than 10 years of operation

Segmented:

- Projective
- Reduce pile-up effects

Triggering ability:

 Appropriate on-off detector electronics

Non magnetic:

Operable in a 4T field

ECAL Technology Choice

Scintillating Crystal Calorimeter: Lead-Tungstate (PbWO₄)

<u>Ideal calorimeter qualities:</u>

- Total absorption calorimeter
- Short radiation length and Moliere
 Small light output radius, $X_0=0.89$ cm and $R_M=2.1$ cm • Temperature dependent (~2.2%/°C)
- Very dense
- Very fast
- Radiation resistant

Non-ideal qualities: Expensive

PbWO₄ Crystals

- ECAL crystals were produced in Russia and China.
- Strict production control to ensure a uniform, high quality detector.
- All crystals tested for:
 - Light Yield
 - Physical Dimensions
 - Radiation Hardness
- Each crystal is tapered to provide hermeticity and has dimensions:
 - Barrel: ~ 2.5 x 2.5 x 23 cm (25.8 X₀)
 - Endcap: ~ 3.0 x 3.0 x 22 cm (24.7 X₀)

ECAL crystal grown in ingot

ECAL Detector Design

Barrel (EB):

- 61200 crystals total
- 36 Supermodules (SM), each 1.7k crystals

Endcap (EE):

- 14648 crystals total
- 4 Dees, each 3662 crystals
- Crystals combined into SuperCrystals of 5x5 crystals

ECAL Barrel (EB) Construction

Module: 400/500 crystals

EB @ P5

ECAL End-Cap (EE) Construction

SuperCrystal: 25 crystals

Dee (1/2 endcap)

EE Dee 1 & 2 @ P5

On-Detector Electronics

Off-Detector Electronics

The off-detector electronics is the interface between ECAL and CMS.

Off-Detector Electronics (2)

CCS: Clock and Control System

When ECAL is turned on, loads constants into the FE and initializes the electronics; also distributes the clock to be in sync with CMS

DCC: Data Concentration Card

When a L1 accept is issued, the DCC merges the data from ECAL with the other sub-detectors.

TCC: Trigger Concentration Card

For ECAL trigger, computes the trigger primitive at every BX, and sends the data to the regional calorimeter trigger if energy is above threshold.

• TTS: Trigger Throttling System

When a subdetector is busy and cannot accept more data, the acquisition has to stop for all sub-detectors. TTS tells each sub-detector when to stop and restart data acquisition.

SRP: Selective Readout Processor

When there is energy deposition, we don't read-out the full ECAL, only a selected area around energy deposition.

Calibration & Monitoring

ECAL Calibration: (Maintain Energy Resolution)

Without inter-calibration, the same signal (i.e. 120 GeV electron) would produce different outputs in different crystals.

Raw (uncalibrated) Supermodule:

6%-10% spread in resolution among channels

TestBeam Pre-Calibration:

0.3% (9 SM)

Cosmic Pre-Calibration:

1.5-2.5% (36 SM)

Lab Pre-Calibration:

4%

In-Situ Physics Calibration:

0.5% resolution

ECAL Monitoring (Monitor Stability and Measure Radiation Effects):

ECAL Stability (<< 0.5%):

Monitored with Laser Monitoring System

Transparency Change Correction:

Signal Change under Irradiation, Measured with Laser Monitoring System

Calibration Strategy

- Will start with pre-calibration, but would like to improve calibration quickly in-situ
 - Testbeam calibration only on 9 SM for EB (~500 xtals of EE), others have couple % calibration from cosmics for EB and ~10% lab calibration for EE
- Several paths for in-situ physics calibration

Strategy	Time	Precision
Mean energy deposited by jet triggers independent of ϕ at fixed η (after correction for Tracker material)	few hours	~2-3%
Neutral pion mass peak: @ 2x10 ³³ cm ⁻² s ⁻¹	few days	≤1%
Z→ ee: absolute calibration	100 pb ⁻¹	< 1%
W→ ev: E/p measurement	5-10 fb ⁻¹	0.5%

Crystal Transparency Changes & Laser Monitoring System

There is a change in ECAL signal during periods of irradiation due to radiation-dependent crystal transparency changes.

- Dose rate at LHC nominal luminosity is 0.2-0.3 Gy/h in EB and 15 Gy/h in EE
- ~5% changed must be corrected for to maintain energy resolution of detector

Laser Monitoring System to inject light into crystals and monitor output

 Will monitor transparency changes with precision of < 0.1% every 20 minutes during LHC operation

Highlights from Commissioning Timeline

Test Beam Highlights

Inter-calibration (IC) with electron beam

- 9 SMs intercalibrated with electrons @ 120 GeV H4
- 1 SMs partially calibrated with electrons @ 50 GeV H2

Cosmic Data Highlights

Muon Showering in EB & EE

Cosmic Signal in B-Field

ECAL in magenta
HCAL in blue
Tracker and Muon hits in green

CRAFT Data

Cosmics Analysis: Occupancy

Occupancy map of clusters in the ECAL barrel in cosmic muon runs

- CRAFT Data: Magnetic field at 3.8T and the APD gain set to 200
- Clusters are seeded from a single crystal above 15 ADC counts (≈ 130 MeV) OR two adjacent crystals above 5 ADC counts (≈ 2x43 MeV).
- Rate of selecting cosmics with gain 200 was ~7% during CRAFT
- Other modulations due to the cluster efficiency varying with light yield.

Cosmics Analysis: Timing

Profile map of average time associated with clusters in ECAL barrel

- Time is measured in clock units (25 ns) wrt the settings for collisions.
- Binned in 5x5 TTs; color corresponds to clock units.
- Clusters in the bottom are seen later with respect to the top part as a result of the time of flight of the cosmic rays.

Cosmics Analysis: Energy Spectrum

Energy spectrum in ECAL barrel for CRAFT cosmic muon runs

- Energy is obtained summing the energies of all the crystals belonging to a cluster.
- "High energy" events mostly from muon brem.
- Rate of events with cluster > 2 GeV is ~ 0.3% (~4% of all cosmic clusters)

Cosmics Analysis: dE/pdX

dE/ρdX with pointing muons

- As function of muon momentum (measured from tracker tracks)
- Results in good agreement with PbWO₄ expected stopping power;
 Demonstrates correctness of the tracker momentum scale and ECAL energy scale from test-beam pre-calibration with electrons.
- More systematic studies needed to understand region below 3 and above 100 GeV/c, comparing also with Cosmics MC

First Beam Data: Splash Events

Beam was sent to collimators ~150m upstream of CMS, creating a fixed target like environment at CMS, ~2x10⁹ protons on collimator

Beam Splash: ECAL Energy

> 99% of ECAL channels fired and ~200 TeV energy deposited in EB+EE

Beam (clockwise) came from plus side.

Around 200k muons crossing ECAL per event (~4 muons/cm²).

EE pre-calibrations were yet applied (lowest gain photodetectors are nearest the beam pipe).

Beam Splash Correlations

Correlation ECAL Energy with Energy Measured by

Beam Loss Monitors (BLM) and HCAL

Toyoko Orimoto, Caltech

Conclusions

ECAL Barrel & Endcap

- Commissioned and have been regularly taking data for many months now; Participated in all global runs (CRUZET-CRAFT)
- Millions of cosmic data to analyze (on-going)
- Successful observation of first beam data at LHC; utilizing this data as much as possible

Plans for next months

- Installation and commissioning of pre-shower
- EE trigger installation
- Hardware issues: LV, FE problems, etc need to be resolved
- Ready analyses for beam: calibration, prompt feedback

Interested in Joining the ECAL PFG?

ECAL Prompt Feedback Group (PFG)

- Great place for newcomers to start; many young students have started their work on CMS with our group.
- Great way to gain ECAL expertise, but also to learn how to access and analyze data quickly, trouble shoot problems, etc...
- Most of the results shown today have been produced by the PFG
- Prerequisites are a basic knowledge of CMSSW and ECAL, availability to take on-duty shifts and attend PFG meetings; also, your institution should be a part of ECAL Group.

L'ESPERIMENTO DEL CERN

Parte il test del Big Bang a Ginevra, festa e applausi per gli scienziati | Foto

O8:44 | SCIENZE | Al via il progetto più ambizioso della fisica moderna, alla ricerca della «particella di Dio». I primi scontri tra nubi di protoni a novembre. Ma Monsignor Sgreccia frena gli entusiasmi sulla particella Higgs: «Dio non si può trovare con gli esperimenti» Caprara ■ Video

Reference Links

- CMS 101 Workshop (very nice ECAL intro):
 http://indico.cern.ch/conferenceDisplay.py?confld=35545
- LPC Run Plan Workshop (ECAL Talk, a bit outdated): <u>http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&contribId=44&sessionId=7&subContId=2&confId=30</u> 825
- ECAL Cosmics Analysis Tutorial (also a bit outdated but still interesting and informative): http://indico.cern.ch/contributionDisplay.py?contribld=4&confld=32360
- ECAL CRAFT Results: http://indico.cern.ch/conferenceDisplay.py?confld=46935
- ECAL TDR:

http://cmsdoc.cern.ch/ftp/TDR/ECAL/ecal.html

Extra Slides

CMS Rapidity Coverage

Detector ambient air temperature 18°C

Dew point 9°C ± 1°C

T EB = <12; 18°C> T EE =18°C ±0.1°C

Lead Tungstate Properties

Fast light emission: ~80% in 25 ns

Peak emission: ~425 nm (visible region)

Short radiation length: $X_0 = 0.89$ cm

Small Molière radius : $R_{M} = 2.10 \text{ cm}$

Radiation resistant to very high doses.

But:

Temperature dependence ~2.2%/°C

→ Stabilise Crystal Temp. to ≤ 0.1°C

Formation and decay of colour centres in dynamic equilibrium under irradiation

→ Precise light monitoring system

Low light yield (~1% Nal)

→ Photodetectors with gain in mag field

Pre-Shower Detector (ES)

- Two layers of lead followed by silicon sensors placed in front of EE (1.6<η<2.6)
- 2mm Si strips to distinguish photons from π^0 s and for vertex identification
- ES+ installed in Feb, ES- in March

Photo Detectors

PWO4 has a very low light output, need to amplify signal.

Problem: Limited space and 4T field

Solution: A photon-to-current device with built-in gain

Barrel:

Avalanche photodiodes (APD)

- •Two 5x5 mm² APDs/crystal
- •Gain: 50
- •Temperature dependence: 2.4%/°C

Endcaps:

Vacuum phototriodes (VPT)

- Active area ~ 280 mm²/crystal
- Gain 8 10 at B = 4 T
- More radiation resistant than Si diodes (with UV glass window)

Crystal Transparency Changes

Measured on several irradiation/recovery cycles relation between transparency change and variation of scintillation signal Small dispersion of the α parameter, allow

Small dispersion of the α parameter, allow to use a constant for each producer and crystal type (barrel/endcap)

Toyoko Orimoto, Caltech

EE VPT Studies & LED Pulser System

EE photodetectors (VPTs) stability:

- VPT response is intrinsically rate dependent
 - Need 'stability' system to make their response independent of rate.
 - This effect is much reduced when the B field is ON

LED pulser system

- Will run constantly, providing 'soak light'
- Installed and tested at P5
- VPT response was studied throughout CRAFT to check behavior with field

Cosmics Pre-Calibration

Each EB supermodule exposed to cosmics for at least 1 week

- Supermodule inclined 10°
- Increased APD gain (x4)
- ~5 million triggers/SM
- ~500 selected events/crystal

Cosmics Analysis: Muon Track Matching

Cluster matching with muon tracks

- Dominated by multiple scattering in solenoid + HCAL
- η is measured by DT with less points than ϕ

Reconstructed clusters matching muon tracks for DT Triggered events

Δη & Δφ btwn extrapolated track match to cluster

