

Tracking in CMS Under short notice, for the CMS tracking group, Jean-Roch Vlimant

Acknowledgment and References

Material taken from K.Burkett, A.Dominguez, B.Mangano, D.Stuart.

"CMS Physics TDR Volume I", 2006

"The CMS experiment at the CERN LHC", 2008 JINST 3 S08004

Outline

- Overview of the Inner Tracking System
- Principles of Track Reconstruction
- Track Reconstruction in CMS
- Performances with Cosmic Tracks
- Summary

The CMS Detector

Particle Journey Through CMS

The muon system is a tracking detector too. Will concentrate on the silicon tracker in this talk.

J-R Vlimant

Track Reconstruction in HEP

- Essentially reconstruct the paths of charged particles.
- With magnetic field bending : aim at measuring the momentum of particles
- Determine the interaction point (primary vertex) and particle decays (secondary vertex)
- Confirm/complement reconstruction from other sub-detector: track-jets, tau decay track multiplicity, muon global fit, photon track veto, particle flow,...

ILC

1/12/09 6

Overview of CMS Inner Tracker

"The CMS experiment at the CERN LHC", 2008 JINST 3 S08004 http://www.iop.org/EJ/journal/-page=extra.lhc/jinst

CMS Solenoid

- Original design for CMS
 Contains the calorimeters
- Largest super-conducting solenoid
 - > 200 t at 4.5K with liquid Helium
 - > 4T over ~1400 m^3
 - > 2.7 GJ stored energy

- Inner magnetic field mostly uniform in tracker volume
- Slightly not uniform in end-caps
- Return flux channeled in the yoke

8

Silicon Detector Technology

- p-n diode under reverse bias.
- Large depletion rejection free of charge carrier.
- Ionization from charged particles creates a current in the diode.
- Amplification in electronics only.
- Pulse integration gives total ionization charge
- Shape of metal contact
 - > Thin rectangle: strip detector.
 - Square: pixel detector.
- Compromise on thickness for total charge and material effects.

CMS Tracker Layout

- Pixel layers, 3D measurements (green)
- Double sided strip modules, 3D measurements (blue)
- Single sided strip modules, 2D measurements (red)

CMS Coverage

Tracker covers up to 2.5. Hardly any detector after that anyways.

J-R Vlimant

Tracking in CMS - JTerm III Meeting @ LPC

1/12/09 11

Pixel Tracker

- 3 barrel layers at r=4, 7, 11 cm ٠
 - > Overlapping in phi
- 2 disk on each side at z=34, 46 cm ٠
 - Room for an extra one at 59 cm
 - \rightarrow Modules tilted by 20° for charge sharing
- Pixel of size 100 μ m x 150 μ m ٠

180 µm

- 250 μ m sensor thickness •
- 48M+18M channels $(1m^2)$

silicon sensor 250 µm

readout chip

r- ϕ resolution 10 μ m

Solder

Jum

r-z resolution 20 μ m

Pixel Tracker Read-Out

- Amplification, buffering and zero suppression done in the Read-Out Chip (ROC).
- Token Bit Manager (TBM) groups 8/24 ROCs.
- Analog signal from TBM send to FED via optical fibers.
- Trigger, clock and chip configuration send to TBM via FEC using optical fibers.

Micro Strip Tracker

- 10 barrel layers up to r=110 cm ٠
 - ▹ 4 inner barrels (TIB), 9° tilt
 - 6 outer barrels (TOB)
- 12 disk on each side up to z=275 cm
 - > 3 inner (TID)
 - ▹ 9 end cap (TEC)
- Strip of pitch 80 μ m to 200 μ m
 - Adaptable pitch in disks
- Strip length 10 to 20 cm
- 320 μ m or 500 μ m sensor thickness
- $\sim 50\%$ double sided modules
- 9.3M channels (200 m^2)

J-R Vlimant

Tracking in CMS - JTerm III Meeting @ LPC

1,200

1100

1000

900

300

700

600 500 400

300

200

100

Micro Strip Tracker Read-Out

- Amplification, buffering and shaping done in the APV
- Signal send out to front end driver (FED) through optical fibers upon L1 decision (n.b. L1 does not use tracker)
- Temperature, currents, low voltages... are monitored via front end controller (FEC)
- Clock, trigger, gains,... are set via the FEC using optical fibers.

CMS DAQ System

sub-detector	number of	number of	number of	number of data	number of DAQ
	channels	FE chips	detector data links	sources (FEDs)	links (FRLs)
Tracker pixel	$\approx 66 \text{ M}$	15840	≈ 1500	40	40
Tracker strips	$\approx 9.3 \text{ M}$	pprox 72 k	\approx 36 k	440	250 (merged)
Preshower	144384	4512	1128	56	56
ECAL	75848	$\approx 21 \text{ k}$	\approx 9 k	54	54
HCAL	9072	9072	3072	32	32
Muons CSC	$\approx 500 \mathrm{k}$	\approx 76 k	540	8	8
Muons RPC	192 k	\approx 8.6 k	732	3	3
Muons DT	195 k	48820	60	10	10
Global Trigger	n/a	n/a	n/a	3	3
CSC, DT Track Finder	n/a	n/a	n/a	2	2
Total	$\approx 76 M$			626	458

Done with Tracker Hardware. Move on to Track Reconstruction.

Principles Of Track Reconstruction

A) Pattern Recognition

 Collect hits compatible with a particle crossing the detector.

B<u>) Final Fit</u>

 Determine precisely the initial particle 3-vector.

Ideal Case

Charged particle in uniform magnetic field: helix. $p_{T} \simeq 0.3$ B R

Realistic Scenario

- Particle looses energy in material (dE/dx)
- Particle scatters (multiple scattering)
- Magnetic field is not uniform.

Figure 27.9: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

 $600 \ \mu m.GeV/300 \ \mu m per m in Si$

J-R Vlimant

Tracking in CMS - JTerm III Meeting @ LPC

1/12/09 18

Pattern Recognition

Possible approaches

- Hit combinatorics.
- Pattern matching.
- Space transform.
- Constraint seeding.
- * <your idea here>

19

Final Fit

Particle trajectories are helix locally and track parameters are given at a reference locus Track parameters \equiv Helix Parametrization. Helix Description = 5 parameters. helix Charge: Q=sign(C) Different 5-parameter sets exist depending Helix radius: C, $\cot(\theta)$, d₀, ϕ_0 , z₀ $\rho = Q/2C$ (X0,Y0) on the purpose: Distance from origin: ωt CDF Note #1790 • Curvilinear parameters $(q/lpl, \lambda, \phi, x_T, y_T)$ s=QD+p Origin of circle: • Perigee parameters $(\rho, \theta, \phi, d_0, z_0)$ $X0 = s \cos \beta$ $Y0 = s sin \beta$ Track state at point D B=(0,0,-B) • CMS tracks (q/lpl, λ , ϕ , d₀, z₀) of closest approach x Direction at point of closest approach: Φ0=β-Q 72

Helix only locally, no analytical function to fit to the hits. ⇒Recursive fitting ,Kalman Filtering "prediction" takes into account dE/dX and Multiple scattering.

$$x_{p} \pm \sigma_{p} \quad \text{prediction}$$

$$x_{h} \pm \sigma_{h} \quad \text{hit} \quad \text{Example} \\ \text{in 1D}$$
New x =
$$\frac{(x_{p} / \sigma_{p}^{2}) + (x_{h} / \sigma_{h}^{2})}{(1 / \sigma_{p}^{2}) + (1 / \sigma_{h}^{2})} = \text{weighted average}$$

Tracker Material

Significant amount of material. Mostly structure and cabling. Plays a significant role in track fitting and also has to be taken into account during pattern recognition.

Road Search Track Reconstruction

- "Road" between inner and outer locations pre-calculated with charge and transverse momentum assumption.
- "Cloud" of reconstructed hits collected in the road

Combinatorial Track Finder (CTF)

- Starts from a couple of hits (seed) with a very rough estimate of track parameters.
- Propagate to successive crossed tracker layer and search for compatible hits.
- Use Kalman update procedure at each step to determine new estimated track parameters.
- Repeat until stopping conditions are reached.

Predicted Performance

- Few but precise tracker layers
- Module overlap and stereo layers increases the number of measurement points

Iterative CTF Tracking

- CTF Pattern recognition with hit combinatorics is limited in by hit density.
- Perform pattern recognition in increasing phase space with hit removal.
 - > Step N pattern recognition.
 - Track quality selection.
 - Removal of associated hits.
 - Step N+1 pattern recognition.

Step 2: pixel triplets (pT_{min}=0.3 GeV) Step 3: mixed pairs Merge all tracks Step 4: pixel-less pairs efficiency vs n fake rate vs n 0.7 $\sigma(\delta \mathbf{p}_t/\mathbf{p}_t)$ 0.6 0.5 0.4 tt Monte Carlo, comparing 0.3 10 **2.1** and **3.0** software version 0.2 0.1 <u>25</u> n 0.5 0 -2 -1.5 -1 -0.5 2 15 20 Good efficiency for general track reconstruction.

Single track reconstruction efficiency ~100% (not shown)

0.8

0.7

0.6

Tracking in CMS - JTerm III Meeting @ LPC

Step 0: pixel triplets (pT_{min}=0.5 GeV)

Step 1: pixel pairs

Nuclear Interaction

- Specific pattern recognition for secondary tracks.
- Use general tracks to look for extra compatible hits.
- Build secondary seeds and build tracks.

Promising. Orphan project to be pursued.

Electron Fit

- Standard pattern recognition with calorimeter confirmation.
- Energy loss of electron is highly non-Gaussian due to Bremsstrahlung.
- Not modeled properly in standard Kalman Filtering.
- Use a dedicated weighted Gaussian sum to model energy loss.
- CPU intensive but yield better momentum resolution.

Photon Conversion

- Photons convert in tracker material
- Displaced track inefficiently seeded in pixel detector
- Seeding from outside required to limit the number of layers looked for seeds.

[>]Pixel detector visible. >Inner strip layers faint.

[>]Not enough hits to have many tracks in outer strip layers

J-R Vlimant

Tracking in CMS - JTerm III Meeting @ LPC

Beam Halo Muons

- Expected and observed beam halo splash in CMS during LHC commissioning in September 2008.
- Tracker **was not switched on** in order to limit the risk of damage to modules due to high voltage.
- Dedicated track reconstruction used on Monte Carlo.
- Track reconstruction in the muon system exercised in September 2008.

Muons From Cosmic Shower

- Cosmic rays produce particle showers in the earth atmosphere.
- Most of the particles are stopped
- before reaching the ground.
- Muons reach CMS 100m underground.

Tracking in CMS - JTerm III Meeting @ LPC

Data/Monte Carlo Comparison

R.Demina, Y.Gotra, B.Betchart

Hit Reconstruction Efficiency

Idea:

- Select good quality tracks, with a few missing hits allowed.
- Select module definitely crossed by the track
- Look for reconstructed hit on the module

Top/Bottom Tracking Efficiency

G.Cerati

ldea:

- Divide the tracker in two halves along y=0.
- Reconstruct tracks from hits with y>0 (Top Tracks).
- Reconstruct tracks from hits with y<0 (Bottom Tracks).
- Use Top tracks as a tag to probe Bottom tracker efficiency: ε(B|T).
- Use Bottom tracks as a tag to probe Top tracker efficiency: ε(T|B).

Muon System to Tracker Efficiency

J.Andrea

Idea:

- Select track pair reconstructed in muon system only
- Look for matching track in the tracker

Resolution with Split Tracks

A.Bonato, A.Gritsan, N.Tran, S.Wagner

Original Cosmic Track Idea:

op Half Cosmic Track

- Select crossing track with no bias in pattern recognition (brute force combinatorics)
 - Split the track in the middle and refit individually
- Compare track parameters

Tracking in CMS - JTerm III Meeting @ LPC

Bottom Half Cosmic Track

Track Alignment With Cosmics

- Alignment procedure carried out during CruZet and CrafT runs.
- Tracker alignment improved significantly in CrafT.
- Importance of B on and B off data to disentangle effects.

J-R Vlimant

Summary

- CMS has a complex and high-performance Inner Tracking System.
- Track reconstruction in CMS for collision operation is foreseen to be very good.
- Experience with Cosmic data is vital for tracker commissioning.
 - > Interesting ideas to be pursued.
- Waiting for the LHC, but CMS takes data...
 - Lots of room for vital contributions

J-R Vlimant

CERN - LHC

Tevatron .vs. LHC

LHC

1	EVATRON	LHC	
beams	p-pbar	p-p	
circumference	6 km	27 km	
energy	2 TeV	14 TeV	
luminosity	1032	$10^{34} \text{ cm}^{-2}\text{s}^{-1}$	
	8 fb ⁻¹	300 fb ⁻¹	
bunch spacing	392 ns	25 ns	
collisions/xing	6	20	
collab'n size	600 each	2000 each	
running mo/yr	12	6	

Collision rate at LHC is 40 Mhz ~300 times more collisions per second

J-R Vlimant

Track Reconstruction at CMS

- General track reconstruction presented here.
- Dedicated track reconstruction detailed later on.

