

Trigger & DAQ

US CMS "JTerm" III
Wesley H. Smith
U. Wisconsin - Madison
January 13, 2009

Outline:

Introduction to LHC Triggering
Challenges, Architecture & Timing
Level-1 Calorimeter & Muon Triggers
Higher Level Triggers
The Future: SLHC Trigger

LHC Collisions

Proton-Proton 2835 bunch/beam

Protons/bunch 10¹¹

Beam energy 7 TeV (7x10¹² eV)

Luminosity 10³⁴ cm⁻² s⁻¹

Crossing rate 40 MHz

with every bunch crossing
23 Minimum Bias events
with ~1725 particles produced

•

Higgs

SUSY.....

Selection of 1 in 10,000,000,000

Particle

Beam Xings: LEP. TeV, LHC

LHC has ~3600 bunches

- And same length as LEP (27 km)
- Distance between bunches: 27km/3600=7.5m
- Distance between bunches in time: 7.5m/c=25ns

LHC Physics & Event Rates

At design $L = 10^{34} \text{cm}^{-2} \text{s}^{-1}$

- 23 pp events/25 ns xing
 - •~ 1 GHz input rate
 - "Good" events contain20 bkg. events
- 1 kHz W events
- 10 Hz top events
- < 10⁴ detectable Higgs decays/year

Can store ~ 300 Hz events Select in stages

- Level-1 Triggers
 - •1 GHz to 100 kHz
- High Level Triggers
 - •100 kHz to 300 Hz

Collisions (p-p) at LHC

Event size:
Processing Power:

~1 MByte

~X TFlop

Processing LHC Data

LHC Trigger & DAQ Challenges

16 Million channels
3 Gigacell buffers

1 MB EVENT DATA

200 GB buffers

~ 400 Readout memories

EVENT BUILDER.

A large switching network (400+400 ports) with total throughput ~ 400Gbit/s forms the interconnection between the sources (deep buffers) and the destinations (buffers before farm CPUs)

~ 400 CPU farms EVENT FILTER.

A set of high performance commercial processors organized into many farms convenient for on-line and off-line applications.

5 TeraIPS

Petabyte ARCHIVE

Challenges:

1 GHz of Input Interactions

Beam-crossing every 25 ns with ~ 23 interactions produces over 1 MB of data

Archival
Storage at
about 300 Hz of
1 MB events

Challenges: Pile-up

- "In-time" pile-up: particles from the same crossing but from a different pp interaction
- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need "bunch-crossing

Challenges: Time of Flight

4Tesla

Level 1 Trigger Operation

Level 1 Trigger Organization

Trigger Timing & Control

Optical System:

ale High-Power

er per zone

- Reliability, transmitter upgrades
- **Passive optical** coupler fanout

0 nm Operation

Negligible chromatic dispersion

aAs photodiodes

Radiation resistance, low bias

Detector Timing Adjustments

to Align:

)etector pulse
v/collision at IP

rigger data w/ eadout data

Different letector trigger lata v/each other Bunch Crossing lumber .evel 1 Accept

lumber

Synchronization Techniques

2835 out of 3564 p bunches are full, use this pattern:

CMS Trigger Data

Level 1: Only Calorimeter & Muon

High Occupancy in high granularity tracking detectors

Pattern recognition much faster/easier

Simple Algorithms

Small amounts of data

Compare to tracker info

CMS Trigger Levels

CMS Level-1 Trigger & DAQ

Overall Trigger & DAQ Architecture: 2 Levels:

L1 Trigger Locations

Underground Counting Room

Central rows of racks for trigger

 Connections via highspeed copper links to adjacent rows of ECAL & HCAL readout racks with trigger primitive circuitry

•Connections via optical fiber to muon trigger primitive generators on the detector

Optical fibers
connected via
"tunnels" to detector
(~90m fiber lengths)

CMS Calorimeter Geometry

ECAL Endcap Geometry

Map non-projective x-y trigger crystal geometry onto projective trigger towers:

Calorimeter Trigger Processing

ECAL Trigger Primitives

In the trigger path, digital filtering followed by a peak finder is applied to energy sums (L1 Filter)

Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)

Test beam results (45 MeV per xtal):

CMS Electron/Photon Algorithm

CMS τ / Jet Algorithm

- 12x12 trigger tower E_⊤ sums in 4x4 region steps with central region > others
- Larger trigger towers in HF but ~ same jet region size, 1.5 η x 1.0 ϕ τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5
- Redefine jet as τ jet if none of the nine 4x4 region τ -veto bits are on Output
 - Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

H_T Trigger

Total scalar E_T integrates too much noise and is not easily calibrated

At L1 tower-by-tower E_T calibration is not available

However, jet calibration is available as function of (E_T, η, ϕ)

Therefore, H_T which is the sum of scalar E_T of all high E_T objects in the event is more useful for heavy particle discovery/study

- SUSY sparticles
- Top

Level-1 Trigger Rates: Trigger cuts determine the physics reach

- Efficiency for H→γγ and H→4 leptons = >90% (in fiducial volume of detector)
- Efficiency for WH and ttH production with W→I_V = ~85%
- Efficiency for qqH with H $\rightarrow \tau\tau$ ($\tau\rightarrow$ 1/3 prong hadronic) = ~75%
- Efficiency for qqH with H→invisible or H→bb = ~40-50%

CMS Muon Chambers

CMS Muon Trigger Primitives

RPC pattern recognition

- Pattern catalog
- Fast logic

Memory to store patterns

Fast logic for matching

FPGAs are ideal

DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p, value

CMS Muon Trigger Track Finders

Drift Tubes (DT)

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Sort based on P_T, Quality - keep loc.

Combine at next level - match

Comparators give 1/2-strip resol

Sort again - Isolate?

Top 4 highest P_⊤ and quality muons with Hit strips of 6 layers form a vectol ocation coord.

Match with RPC

Improve efficiency and quality

Single muon trigger efficiency vs. η

L1 single & di-muon trigger rates

working points selected as examples

$$L = 2x10^{33} cm^{-2} s^{-1}$$

$$L = 10^{34} \text{cm}^{-2} \text{s}^{-1}$$

CMS Global Trigger

Input:

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- 4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - All above include location in η and φ
- Missing E_T & Total E_T

Output

L1 Accept from combinations & proximity of above

Global L1 Trigger Algorithms

Particle Conditions

Logical Combinations

Flexible algorithms implemented in FPGAs 100s of possible algorithms can be reprogrammed

Example Level-1 Trigger Table (DAQ TDR: L=2 x 10³³)

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
Isolated e/γ	29	3.3	3.3
Di-e/γ	17	1.3	4.3
Isolated muon	14	2.7	7.0
Di-muon	3	0.9	7.9
Single tau-jet	86	2.2	10.1
Di-tau-jet	59	1.0	10.9
1-jet, 3-jet, 4-jet	177, 86, 70	3.0	12.5
Jet*E _T miss	88*46	2.3	14.3
Electron*jet	21*45	8.0	15.1
Min-bias	united to the second se	0.9	16.0
TOTAL			16.0

 \times 3 safety factor \Rightarrow 50 kHz (expected start-up DAQ bandwidth) Only muon trigger has low enough threshold for B-physics (aka $B_s \rightarrow \mu\mu$)

High Level Trigger Strategy

Front-end pipelines (107 channels)

Detectors

Readout buffers (1000 units)

Event builder (10³ x 10³ fabric switch)

> Processor farms (4 10 6 MIPS)

High level triggers. CPU farms

- Finer granularity precise measurement
- Clean particle signature (π^0 - γ , isolation, ...)
- Kinematics. Effective mass cuts and topology
- Track reco and matching, b,τ-jet tagging
- Full event reconstruction and analysis

Successive improvements: background event filtering, physics selection

High-Level Trig. Implementation

All processing beyond Level-1 performed in the Filter Farm

Partial event reconstruction "on demand" using full detector resolution

Start with L1 Trigger Objects

Electrons, Photons, τ -jets, Jets, Missing E_T, Muons

HLT refines L1 objects (no volunteers)

Goal

- Keep L1T thresholds for electro-weak symmetry breaking physics
- However, reduce the dominant QCD background
 - From 100 kHz down to 100 Hz nominally

QCD background reduction

- Fake reduction: e[±], γ, τ
- Improved resolution and isolation: μ
- Exploit event topology: Jets
- Association with other objects: Missing E_T
- Sophisticated algorithms necessary
 - Full reconstruction of the objects
 - Due to time constraints we avoid full reconstruction of the event L1 seeded reconstruction of the objects only
 - Full reconstruction only for the HLT passed events

Muon Higher Level Trigger

Trigger rates vs. muon p_T threshold through levels of HLT processing at $L = 2 \times 10^{33}$

Efficiency for Higgs selection vs. muon p_T threshold for different Higgs masses

Electron selection: Level-2

"Level-2" electron:

- Search for match to Level-1 trigger
 - Use 1-tower margin around 4x4-tower trigger region
- Bremsstrahlung recovery "super-clustering"
- Select highest E_T cluster

Bremsstrahlung recovery:

- Road along φ in narrow η-window around seed
- Collect all sub-clusters in road → "super-cluster"

CMS tracking for electron trigger

CMS electron HLT

Factor of 10 rate reduction

γ: only tracker handle: isolation

 Need knowledge of vertex location to avoid loss of efficiency

τ-jet tagging at HLT

 τ -jet (E_t^{τ -jet} > 60 GeV) identification (mainly) in the tracker:

Hard track, $p_t^{max} > 40$ GeV, within $\Delta R < 0.1$ around calorimeter jet axis

Isolation: no tracks, $p_t > 1$ GeV, within $0.03 < \Delta R < 0.4$ around the hard track

For 3-prong selection 2 more tracks in the signal cone $\Delta r < 0.03$

QCD jet rejection from isolation and hard track cuts

Further reduction by ~ 5 expected for 3-prong QCD jets from τ vertex reconstruction (CMS full simulation)

B and τ tagging

Soft b-jets with a wide η -range:

Efficiency to tag one b-jet ~ 35% for ~1% mistagging rate (CMS)

τ - tagging with impact parameter measurement

combining the ip measurements of the hard tracks in

the two τ 's $(\tau \rightarrow hadron, \tau \rightarrow lepton)$ into one variable: $\sqrt{\sigma_{ip}(\tau_1)^2 + \sigma_{ip}(\tau_2)^2}$

Expect rejection of 5 - 10 against QCD background and backgrounds with W -> lv, Z -> ll

Signal superimposed on the total

background for $m_A = 200 \text{ GeV}$, $tan\beta = 20$

Example HLT Trigger Menu (L=2x10³³)

Trigger	Threshold (GeV or GeV/c)	Rate (Hz)	Cumulative Rate (Hz)
Inclusive electron	29	33	33
Di-electrons	17	1	34
Inclusive photons	80	4	38
Di-photons	40, 25	5	43
Inclusive muon	19	25	68
Di-muons	7	4	72
Inclusive τ-jets	86	3	75
Di-τ-jets	59	1	76
1-jet * E _T miss	180 * 123	5	81
1-jet OR 3-jets OR 4-jets	657, 247, 113	9	89
Electron * tau	19 * 45	2	90
Inclusive <i>b</i> -jets	237	5	95
Calibration and other events (10%)		10	105
TOTAL			105

SUSY Efficiencies (MSUGRA benchmark)

	(M	WISCONSIN		
	Level-1 Trigger		High-Le	vel Trigger
SUSY point	1 Jet >79 GeV+ E _T ^{miss} >46 GeV	3 jets, E _T >86 GeV	1 Jet >180GeV+ E _T ^{miss} >123 GeV	4 jets, E _T >113 GeV
$\begin{array}{ccc} m(\tilde{g}) & m(\tilde{u}_L) \\ \hline (\text{GeV/c}^2) & (\text{GeV/c}^2) \\ \hline \\ 466 & 410 \\ \\ 447 & 415 \\ \\ 349 & 406 \\ \\ \end{array}$	(GeV/c²) 70 66 45 efficiency (%)	efficiency (%) (cumulative efficiency)	efficiency (%)	efficiency (%) (cumulative efficiency)
4	88	60 (92)	67	11 (69)
5	87	64 (92)	65	14 (68)
6	71	68 (85)	37	16 (44)
4R	67	89 (94)	27	28 (46)
5R	58	90 (93)	17	30 (41)
6R	47	84 (87)	9	20 (26)
Background	rate (kHz)	rate (kHz) (cumulative rate)	rate (Hz)	rate (Hz) (cumulative rate)
	2.3	0.98 (3.1)	5.1 Hz	6.8 (11.8)

LHC → SLHC physics evolution

De Roeck, Ellis, Gianotti: hep-ph/0112004 Gianotti et al: hep-ph/0204087, Eur. Phys. J. C39, 293(2005)

Detector Luminosity Effects

$H\rightarrow ZZ \rightarrow \mu\mu ee$, M_H = 300 GeV for different luminosities in CMS

SLHC Level-1 Trigger @ 10³⁵

Occupancy

- Degraded performance of algorithms
 - Electrons: reduced rejection at fixed efficiency from isolation
 - Muons: increased background rates from accidental coincidences
- Larger event size to be read out
 - New Tracker: higher channel count & occupancy → large factor
 - Reduces the max level-1 rate for fixed bandwidth readout.

Trigger Rates

- Try to hold max L1 rate at 100 kHz by increasing readout bandwidth
 - Avoid rebuilding front end electronics/readouts where possible
 - Limits: (readout time) (< 10 μs) and data size (total now 1 MB)
 - Use buffers for increased latency for processing, not post-L1A
 - May need to increase L1 rate even with all improvements
 - Greater burden on DAQ
- Implies raising E_T thresholds on electrons, photons, muons, jets and use of multi-object triggers, unless we have new information ⇒Tracker at L1
 - Need to compensate for larger interaction rate & degradation in algorithm performance due to occupancy

Radiation damage -- Increases for part of level-1 trigger located on detector

Tracking needed for L1 trigger

Single electron trigger rate

Isolation criteria are insufficient to reduce rate at L = 10^{35} cm⁻².s⁻¹

We need to get another x200 (x20) reduction for single (double) tau rate!

Use of CMS L1 Tracking Trigger

Combine with L1 μ trigger as is now done at HLT:

- Attach tracker hits to improve P_T assignment precision from 15% standalone muon measurement to 1.5% with the tracker
 - Improves sign determination & provides vertex constraints
- •Find pixel tracks within cone around muon track and compute sum P_T as an isolation criterion
 - Less sensitive to pile-up than calorimetric information if primary vertex of hard-scattering can be determined (~100 vertices total at SLHC!)

To do this requires η - ϕ information on muons finer than the current 0.05–2.5°

 No problem, since both are already available at 0.0125 and 0.015°

CMS ideas for trigger-capable tracker modules -- very preliminary

- Use close spaced stacked pixel layers
- Geometrical p_⊤ cut on data (e.g. ~ GeV):
- Geometrical p_T cut on data (e.g. ~ GeV):
 Angle (γ) of track bisecting sensor layers defines p_T (⇒ window)
 For a stacked system (sepn. ~1mm), this and the stacked system (sepn. ~1mm)
- is ~1 pixel
- Use simple coincidence in stacked sensor pair to find tracklets
- More details & implementation next slides

p_T Cuts in a Stacked Tracker – p_T Cut Probabilities

•Depends on:

Alternative Tracking Trigger: Associative Memories (from CDF SVX)

Challenge: input Bandwidth \Rightarrow divide the detector in thin ϕ sectors. Each AM searches in a small $\Delta \phi$

OFF DETECTOR

1 AM for each enough-small Δφ Patterns

Hits: position+time stamp
All patterns inside a single chip
N chips for N overlapping events
identified by the time stamp

Data links

-- F. Palla, A. Annovi, et al.

Event1 AMchip1 Event2 AMchip2 Event3 AMchip3 • • • •

EventN AMchipN

Cluster width discrimination

R-Φ plane, "ideal" barrel layer

Discrimination of low p_T tracks made directly on the strip detector by choosing suitable pitch values in the usual range for strip sensors.

(Needed because 25M channels x 4% occupancy would require 6000 2.8 Gbps links at 100 kHz.)

In the region above 50 cm, using 50µm pitch, about 5% of the total particles leave cluster sizes with ≤2 strips

•No. of links (2.5Gbps) ~300 for whole tracker (assuming 95% hit rejection)

Once reduced to ~100 KHz, it would only need few fast readout links to readout the entire Tracker

CMS SLHC Trigger Implementation Goals

Modular

- Develop modules independently
- Share across subsystems

Compact

- Fewer crates → fewer interconnections
- Smaller circuit boards

Flexible

- FPGAs
- Programmably routable backplanes
 - Need flexibility in routing of data and processed results

Higher density inputs

Bring more in more information on a finer grain scale

More general & modular firmware

- Less device dependence
- Sharing of firmware modules & development

Proto. Generic Trigger System

Concept for Main Processing Card

uTCA Crate and Backplane

The Main Processing Card (MPC):

- Receives and transmits data via front panel optical links.
- On board 72x72 Cross-Point Switch allows for dynamical routing of the data either to a V5 FPGA or directly to the uTCA backplane.
- The MPC can exchange data with other MPCs either via the backplane or via the front panel optical links.

• The Custom uTCA backplane:

- Instrumented with 2 more Cross-Point Switches for extra algorithm flexibility.
- Allows dynamical or static routing of the data to different MPCs.

FPGA Progress

CMS L1 Trigger Stages

Current for LHC:

 $\mathsf{TPG} \Rightarrow \mathsf{RCT} \Rightarrow \mathsf{GCT} \Rightarrow \mathsf{GT}$

Proposed for SLHC (with tracking added): TPG ⇒ Clustering ⇒ Correlator ⇒ Selector

CMS Level-1 Latency

Present CMS Latency of 3.2 μsec = 128 crossings @ 40MHz

- Limitation from post-L1 buffer size of tracker & preshower
- Assume rebuild of tracking & preshower electronics will store more than this number of samples

Do we need more?

- Not all crossings used for trigger processing (70/128)
 - It's the cables!
- Parts of trigger already using higher frequency

How much more? Justification?

- Combination with tracking logic
- Increased algorithm complexity
- Asynchronous links or FPGA-integrated deserialization require more latency
- Finer result granularity may require more processing time
- ECAL digital pipeline memory is 256 40 MHz samples = 6.4 μsec
 - Propose this as CMS SLHC Level-1 Latency baseline

Trigger & DAQ Summary: LHC Case

Level 1 Trigger

- Select 100 kHz interactions from 1 GHz (10 GHz at SLHC)
- Processing is synchronous & pipelined
- Decision latency is 3 μs (x~2 at SLHC)
- Algorithms run on local, coarse data
 - Cal & Muon at LHC (& tracking at SLHC)
 - Use of ASICs & FPGAs (mostly FPGAs at SLHC)

Higher Level Triggers

- Uses dedicated farm of PCs
- Select regions to unpack & process based on L1 Trigger
- Run software/algorithms as close to offline as possible