

Two-beam Test Stand Status and Results

Roger Ruber & Igor Syratchev for the TBTS team

· Different scenarios of the drive beam generation in the

• To compensate for the lack of current, the active TBTS PETS length was significantly increased: from the original 0.215 m to 1 m

original 0.215 m to 1 m.				
Operation mode	#1	#2	#3	CLIC
Current, A	<30	14	4	101
Pulse length, ns	140	<240	<1200	240
Bunch Frequency, GHz	12	12	3	12
PETS power (12 GHz), MW	<280	61	5	135

12 GHz PETS testing at CLEX

• In order to demonstrate the nominal CLIC power level and pulse length, it was decided to implement a different PETS configuration - PETS

Expected PETS power production with re-circulation. The calculation followed the measured performance of all the

Time, ns

PETS high power tests at CERN (TBTS)

The first RF 12 GHz power generation from the PETS in recirculation regime 15.11.008

Input for calculations:

-Measured: I = 1.18 A

Coupling = 0.82

Similar to SLAC, the conditioning of the system is accomplished with heavy out gassing.

Two-Beam Test Stand

Relevance for the Decelerator BD studies: the effect of the PETS on the Drive Beam

RF Power Generation (150ns pulse)

- 1.25 MW max. at 1.93 A, no significant beam loss
- comparison RF power to beam current:
 - \rightarrow assume

$$RF \propto \langle a \rangle I^2$$

Power Generation with Re-circulation

6

- max. 5.2 MW power at 1.8A
 factor 4.4 compared to 1.25 MW at 1.9 A w/o circ.
- not sure about phase-shift & variable splitter

Beam Kick Measurements

- 5 BPMs in each beam line
 - 2 before: incoming angle & offset
 - 2 after: kick angle
- dipole + BPM5 for energy measurement

$$\vec{x} = A\vec{\theta}$$

$$\theta = (A^t A)^{-1} A^t \vec{x}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ R_{11}^{12} & R_{12}^{12} & 0 & 0 \\ R_{11}^{13} & R_{12}^{13} & R_{12}^{c3} & 0 \\ R_{11}^{14} & R_{12}^{14} & R_{12}^{c4} & 0 \\ R_{11}^{15} & R_{12}^{15} & R_{12}^{c5} & D^5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1' \\ \theta \\ dp/p \end{pmatrix}$$

Estimation of Beam Bending in PETS

bend: $\theta = \vec{g} \cdot \vec{x}$

- g for bend in centre of PETS
- incoming beam not on PETS axis
- gradual change along pulse

