Some Design Considerations for L1 – the LHeC Detector for an ep and eA Experimental Program at CERN

EmC-insert-1/2

EmC-Barrel-Ext

HaC-insert-1/2 EmC-Endcap

HaC-Barrel

EmC-Barrel

Central Tracking

Fwd/Bwd Tracking

Centra

EmC-Barrel-Ext

and 17

10° and 170°

mC-insert-1/2

EmC-Endcap

HaC-insert-1/2

L1 Low Q² SetUp

Kostka, Polini, Wallny

LHeC Convenor Meeting, 15-16th December 2008

Kostka, Polini, Wallny

Elliptical Be beam pipe radii:

 $r_y=3.4$ cm and $r_x=5.4$ cm – Sufficient space for synchrotron radiation fan?

Elliptical Be beam pipe radii:

 $r_y=3.4$ cm and $r_x=5.4$ cm – Sufficient space for synchrotron radiation fan?

• $X_0 = 35$ cm, Z = 4

Elliptical Be beam pipe radii:

 $r_y=3.4$ cm and $r_x=5.4$ cm – Sufficient space for synchrotron radiation fan?

- $X_0 = 35$ cm, Z = 4
- pipe dimensions very essential decision
 to large extent determines the size of the detector

not yet included: collimators, flanches, services

Near Beam Pipe Tracking

GAS-Si Tracker - GOSSIP Type CNIKHEF

Gas On Slimmed Silicon Pixels (or Strixels/Pads)

Near Beam Pipe Tracking

GAS-Si Tracker – GOSSIP Type ©NIKHEF

Gas On Slimmed Silicon Pixels (or Strixels/Pads)

Near Beam Pipe Tracking

GAS-Si Tracker – GOSSIP Type ©NIKHEF

Gas On Slimmed Silicon Pixels (or Strixels/Pads)

Container Model

Near Beam Pipe Tracking

GAS-Si Tracker – GOSSIP Type ©NIKHEF

Gas On Slimmed Silicon Pixels (or Strixels/Pads)

Container Model

* see talk of E.Koffeman: GOSSIP, LHeC workshop, Divonne Sept. 2008 Kostka, Polini, Wallny LHeC Convenor Meeting, 15–16th December 2008

L1 elliptical beam pipe radii: r_y=3.4cm and r_x=5.4cm

* see talk of E.Koffeman: GOSSIP, LHeC workshop, Divonne Sept. 2008 Kostka, Polini, Wallny LHeC Convenor Meeting, 15–16th December 2008

Kostka, Polini, Wallny

LHeC Convenor Meeting, 15–16th December 2008

Gas in a tracking detector

Amplification of primary electrons in gas

- No bias current
- Low capacitance (10 fF) per pixel
- No radiation damage of sensor
 - Operation at room (or any other) temperature
- low sensitivity for neutron and X-ray background
- δ-rays can be recognized
- High ion & electron mobility: fast signals, high count rates are possible

This may result in a design with:

- 1. Less power consumption
- 2. Less cooling
- Reduced complexity (wafer processing instead of bumping)
- 4. Less material

Els Koffeman - LHeC- 2008

Plans

- Large drift volume :TPC for a linear collider
- Micro TPC for nuclear physics
- Thin drift layer : B-layer for ATLAS
- Radiator : transition radiation tracker
- High field : micro channel plate

• LHeC ?

Els Koffeman - LHeC- 2008

Kostka, Polini, Wallny

Plans

- Large drift volume :TPC for a linear collider
- Micro TPC for nuclear physics
- Thin drift layer : B-layer for ATLAS
- Radiator : transition radiation tracker
- High field : micro channel plate
- LHeC ?

→ Collaboration for an advanced LHeC Detector!

Els Koffeman - LHeC- 2008

Kostka, Polini, Wallny

Central Tracker

- B Double Layer Pixel elliptical(?)
 ry=5.2cm and rx=7.2cm (outer radii), 50cm length trigger capable
 - highest resolution affordable (i.e. pixel 20µm x 20µm)
 gas-si: using fast & low_diffusion & safe gas mixture

Central Tracker

- B Double Layer Pixel elliptical(?)
 ry=5.2cm and rx=7.2cm (outer radii), 50cm length trigger capable
 - highest resolution affordable (i.e. pixel 20µm x 20µm) gas-si: using fast & low_diffusion & safe gas mixture
- 5 cylindrical barrel Gas-Si tracker (double) layers*

layer #	inner radius	outer radius	half length – all [cm
1	8.5	11.0	30.0
2	21.0	23.5	35.0
3	33.5	36.0	40.0
4	46.0	48.5	45.0
5	58.5	61.0	50.0

* b-quark triggering (secondary vertex) to be implemented

Central Tracker

- B Double Layer Pixel elliptical(?)
 r_y=5.2cm and r_x=7.2cm (outer radii), 50cm length trigger capable
 - highest resolution affordable (i.e. pixel 20µm × 20µm)
 gas-si: using fast & low_diffusion & safe gas mixture
- 5 cylindrical barrel Gas-Si tracker (double) layers*

layer #	inner radius	outer radius	half length – all [cm
1	8.5	11.0	30.0
2	21.0	23.5	35.0
3	33.5	36.0	40.0
4	46.0	48.5	45.0
5	58.5	61.0	50.0

* b-quark triggering (secondary vertex) to be implemented

LHeC Convenor Meeting, 15–16th December 2008

2 x 4	cone shape	forward/	backward	l Gas-Si t	racker (de	ouble) layers	
cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 4	cone shape	forward/	'backward	Gas-Si	tracker	(double)	layers	
cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +D2	z outerR at +	Dz end_coor	rdinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0		
2	7.0	8.5	11.0	33.5	36.0	94.0	ĸ	
3	8.0	8.5	11.0	46.0	48.5	106.0	\sim	
4	9.0	8.5	11.0	58.5	61.0	118.0		
	CO	uld be 6cm – B-	layer installation	sequence ess	ential			

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cr
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cn
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	174
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cm
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

Some characteristics:

thinning (slimming) of CMOS pixel/strixel/pad chip to 50 μm

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cn
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

- thinning (slimming) of CMOS pixel/strixel/pad chip to 50 μm
- low power: 2.6 µW/pixel -> 1-4 mW/cm² (pixel-strixel): little material required for power & cooling (CO₂ gas)

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	
		T					

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cr
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

- thinning (slimming) of CMOS pixel/strixel/pad chip to 50 μm
- low power: 2.6 µW/pixel -> 1-4 mW/cm² (pixel-strixel): little material required for power & cooling (CO₂ gas)
- low sensitivity for neutrons, X-rays and gammas

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	
		T					

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cr
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

- thinning (slimming) of CMOS pixel/strixel/pad chip to 50 μm
- low power: 2.6 µW/pixel -> 1-4 mW/cm² (pixel-strixel): little material required for power & cooling (CO₂ gas)
- low sensitivity for neutrons, X-rays and gammas
- 1 mm gas detection layer: single-electron measurement
 -> track segment data per layer

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cm
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

- thinning (slimming) of CMOS pixel/strixel/pad chip to 50 μm
- low power: 2.6 µW/pixel -> 1-4 mW/cm² (pixel-strixel): little material required for power & cooling (CO₂ gas)
- low sensitivity for neutrons, X-rays and gammas
- 1 mm gas detection layer: single-electron measurement
 -> track segment data per layer
- Mechanical concept: integration of services (cooling, power, communication), detectors and support structure (see BackUp slides)

2 x 4 cone shape forward/backward Gas-Si tracker (double) layers

cone #	Dz-half length in z	innerR at -Dz	outerR at -Dz	innerR at +Dz	outerR at +Dz	end_coordinates ±z	all[cm]
1 (lay2)	6.0	8.5	11.0	21.0	23.5	82.0	
2	7.0	8.5	11.0	33.5	36.0	94.0	
3	8.0	8.5	11.0	46.0	48.5	106.0	
4	9.0	8.5	11.0	58.5	61.0	118.0	

could be 6cm - B-layer installation sequence essential

2 x 5 forward/backward Gas-Si tracker (2/4*) disks

disk #	inner radius	outer radius	half length	end_position ±z	all [cm]
1	6.0	60.0	4.0	134.	
2	6.0	60.0	4.0	194.	
3	6.0	60.0	4.0	254.	
4	6.0	60.0	4.0	314.	
5	6.0	60.0	4.0	374.	

*it might be necessary to have sandwiches of double disk's for track triggering + double disk's for tracking

- thinning (slimming) of CMOS pixel/strixel/pad chip to 50 μm
- low power: 2.6 µW/pixel -> 1-4 mW/cm² (pixel-strixel): little material required for power & cooling (CO₂ gas)
- low sensitivity for neutrons, X-rays and gammas
- 1 mm gas detection layer: single-electron measurement
 -> track segment data per layer
- Mechanical concept: integration of services (cooling, power, communication), detectors and support structure (see BackUp slides)

Radiation Length [%]					
	Z = 0 mm Z	Z = +/-500 mm			
Gossip detector (50 µm Si)	0.06	0.06			
Cooling (stainless steel tube)	0.001	0.001			
Power (max 0.28 mm aluminium)	0.0	0.3			
Data transfer (max 1.7 mm kapton)	0.0	0.6			
total	0.06	1			
max number of track layers (#)	0.72 (12)	30 (30)			
angle correction $x \sqrt{2}$	0.09 x 2 x /	/2 3			

Energy Flow Calorimetry*

* see talk of F.Simon: CALICE - Calorimeters for the ILC, LHeC workshop, Divonne Sept. 2008
EmCaL E-flow Optimisation

EmCal E-flow Optimisation

Main Goals:

EmCal E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy

EmCal E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers

EmCal E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers
- Good isolation of photon showers :

EmCal E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers
- Good isolation of photon showers :
 - small r_M (Moliere radius) dense calorimeter

EmCaL E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers
- Good isolation of photon showers :
 - small r_M (Moliere radius) dense calorimeter
 - If the transverse segmentation is of r_M size -> optimal transverse separation of electromagnetic clusters

EmCal E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers
- Good isolation of photon showers :
 - small r_M (Moliere radius) dense calorimeter
 - If the transverse segmentation is of r_M size
 -> optimal transverse separation of electromagnetic clusters
 - If the ratio Interaction_Length/Radiation_Length ($\lambda_{\rm I}/X_0$) is large -> longitudinal separation between starting points of electromagnetic and hadronic showers is large

EmCal E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers
- Good isolation of photon showers :
 - small r_M (Moliere radius) dense calorimeter
 - If the transverse segmentation is of r_M size
 -> optimal transverse separation of electromagnetic clusters
 - If the ratio Interaction_Length/Radiation_Length ($\lambda_{\rm I}/X_0$) is large -> longitudinal separation between starting points of electromagnetic and hadronic showers is large
- All of the above help to separate hadron showers as well.
- * see talk of F.Simon: CALICE Calorimeters for the ILC, LHeC workshop, Divonne Sept. 2008

EmCaL E-flow Optimisation

- Main Goals:
 - Measure (isolated) photon energy
 - Separate charged/neutral hadron showers
- Good isolation of photon showers :
 - small r_M (Moliere radius) dense calorimeter
 - If the transverse segmentation is of r_M size -> optimal transverse separation of electromagnetic clusters
 - If the ratio Interaction_Length/Radiation_Length ($\lambda_{\rm I}/X_0$) is large -> longitudinal separation between starting points of electromagnetic and hadronic showers is large
- All of the above help to separate hadron showers as well.
- * see talk of F.Simon: CALICE Calorimeters for the ILC, LHeC workshop, Divonne Sept. 2008

Energy Resolution				
Ejet = Echarged_particles	+	Ephotons	+	Eneutral_hadrons
~60%		~30%		~10%
TRACKERS		ECAL	-	HCAL

 A dense EmCAL with high granularity (small transverse size cells), high segmentation (many thin absorber layers), and with ratio \$\lambda_I/X_0\$ large, is optimal for E-Flow measurement -> 3-D shower reconstruction

- A dense EmCAL with high granularity (small transverse size cells), high segmentation (many thin absorber layers), and with ratio \$\lambda_I/X_0\$ large, is optimal for E-Flow measurement -> 3-D shower reconstruction
- Example Fe, W

- A dense EmCAL with high granularity (small transverse size cells), high segmentation (many thin absorber layers), and with ratio \$\lambda_I/X_0\$ large, is optimal for E-Flow measurement -> 3-D shower reconstruction
- Example Fe, W

Material Nuclear interaction		Density	Moliere	Radiation length	λ/X_0
	length λ [cm]	[g/cm ³]	radius [cm]	<i>X</i> ₀ [cm]	
Fe	16.98	7.87	1.66	1.77	9.59
W	10.31	19.3	0.92	0.35	29.46

- brass (Cu) an option also (CMS), $\lambda_{\rm I}$ =15.1cm – denser than Fe (adding $\lambda_{\rm I}$)

CALICE: Technology

- All calorimeters designed for Particle Flow
 - high granularity: unprecedented longitudinal and transverse segmentation
- Compact devices to accommodate large channel count
 - integrated electronics on detector where possible:
 - ASICs mounted on active material
 - photon sensors directly on scintillator tiles
- Investigation of different technologies:
 - silicon vs scintillators
 - scintillators vs gaseous detectors
 - analog vs digital

CALICE Hardware: Outlook

- Proof of Concept of highly granular calorimeters with present setup
- Comparison of technologies:
 - Si-W vs Scint-W ECAL
 - Analog vs Digital HCAL
- Next steps:
- Development of next-generation prototypes within the EUDET framework:
 - realistic ECAL and HCAL modules

CALICE: Technology

- All calorimeters designed for Particle Flow
 - high granularity: unprecedented longitudinal and transverse segmentation
- Compact devices to accommodate large channel count
 - integrated electronics on detector where possible:
 - ASICs mounted on active material
 - photon sensors directly on scintillator tiles
- Investigation of different technologies:
 - silicon vs scintillators
 - scintillators vs gaseous detectors
 - analog vs digital

CALICE Hardware: Outlook

- Proof of Concept of highly granular calorimeters with present setup
- Comparison of technologies:
 - Si-W vs Scint-W ECAL
 - Analog vs Digital HCAL
- Next steps:
- Development of next-generation prototypes within the EUDET framework:
 - realistic ECAL and HCAL modules

└→ Collaboration for an advanced LHeC Detector!

Electromagnetic Calorimeters – all 20 X₀

inner radiusouter radiushalf lengthend Position ±zEmC-Barrel70.0110.0125.0125.0

EmC-Barrel,

- Pb-fibre sandwich 20 X_0 R/O by position sensitive SiPM's
- position resolution (H1 SPACAL type): 4.4mm/ \langle (E[GeV] + 1.0mm), σ (E)/E = 7%/ \langle (E) \otimes 1%

ιly

Electromagnetic Calorimeters – all 20 X₀

	inner radius	outer radius	half length	end Position ±z
EmC-Barrel	70.0	110.0	125.0	125.0
EmC-Barrel-Ext	70.0	110.0	125.0	375.0 LowQ2 or

- EmC-Barrel, EmC-Barrel-Extension for LowQ² (removable),
 - Pb-fibre sandwich 20 X₀ R/O by position sensitive SiPM's
 - position resolution (H1 SPACAL type): 4.4mm/ \langle (E[GeV] + 1.0mm), σ (E)/E = 7%/ \langle (E) \otimes 1%

Electromagnetic Calorimeters – all 20 X₀

	inner radius	outer radius	half length	end Positio	n ±z
EmC-Barrel	70.0	110.0	125.0	125.0	
EmC-Barrel-Ext	70.0	110.0	125.0	375.0	LowQ2 only
EmC-Endcap	41.0	110.0	20.0	416.0	

LowQ² EmC

- EmC-Barrel, EmC-Barrel-Extension for LowQ² (removable), EmC-Endcap (movable)
 - Pb-fibre sandwich 20 X₀ R/O by position sensitive SiPM's
 or Pb + si-gas Detector instead for higher position resolution (i.e. EmC-Endcap) 11.2cm Pb + 28(sampling) x 1cm si-gas -> ~40cm
 - position resolution (H1 SPACAL type): 4.4mm/ \langle (E[GeV] + 1.0mm), σ (E)/E = 7%/ \langle (E) \otimes 1%

Electromagnetic Calorimeters – all 20 X₀

	inner radius	outer radius	half length	end Positio	n ±z
EmC-Barrel	70.0	110.0	125.0	125.0	
EmC-Barrel-Ext	70.0	110.0	125.0	375.0	LowQ2 only
EmC-Endcap	41.0	110.0	20.0	416.0	
EmC-insert-1	7.0	20.0	20.0	416.0	LowQ ² only

LowQ² EmC

EmC-Barrel, EmC-Barrel-Extension for LowQ² (removable), EmC-Endcap (movable)

- Pb-fibre sandwich 20 X₀ R/O by position sensitive SiPM's
 or Pb + si-gas Detector instead for higher position resolution (i.e. EmC-Endcap) 11.2cm Pb + 28(sampling) x 1cm si-gas -> ~40cm
- position resolution (H1 SPACAL type): 4.4mm/ \langle (E[GeV] + 1.0mm), σ (E)/E = 7%/ \langle (E) \otimes 1%
- EmC-insert-1 Calice-type (removable),
 - tungsten X₀ by order of magnitudes smaller for oriented crystals ^(*)
 - tungsten + si-gas 20 X₀ -> 7cm tungsten + 33(sampling) x 1cm plan. si-gas
 -> 40cm EmC-Endcap/EmC-inserts

* V.A.Baskov et.al., Pisma Zh. Eksp. Teor. Fiz. 56, No.5, 233–236 (September 1992)

Electromagnetic Calorimeters – all 20 X₀

	inner radius	outer radius	half length	end Positior	n ±z
EmC-Barrel	70.0	110.0	125.0	125.0	
EmC-Barrel-Ext	70.0	110.0	125.0	375.0	LowQ2 only
EmC-Endcap	41.0	110.0	20.0	416.0	
EmC-insert-1	7.0	20.0	20.0	416.0	LowQ ² only
EmC-insert-2	21.0	40.0	20.0	416.0	

LowQ² EmC

- EmC-Barrel, EmC-Barrel-Extension for LowQ² (removable), EmC-Endcap (movable)
 - Pb-fibre sandwich 20 X₀ R/O by position sensitive SiPM's
 or Pb + si-gas Detector instead for higher position resolution (i.e. EmC-Endcap) 11.2cm Pb + 28(sampling) x 1cm si-gas -> ~40cm
 - position resolution (H1 SPACAL type): 4.4mm/ \langle (E[GeV] + 1.0mm), σ (E)/E = 7%/ \langle (E) \otimes 1%
- EmC-insert-1 Calice-type (removable),
 EmC-insert-2 Calice-type (removable)
 - tungsten X₀ by order of magnitudes smaller for oriented crystals ^(*)
 - tungsten + si-gas 20 X₀ -> 7cm tungsten + 33(sampling) x 1cm plan. si-gas
 -> 40cm EmC-Endcap/EmC-inserts

HighQ² EmC

* V.A.Baskov et.al., Pisma Zh. Eksp. Teor. Fiz. 56, No.5, 233–236 (September 1992)

- Hadron Calorimeters – all 6 λ_{I}

inner radius outer radius half length end Position ±z (HighQ²) [cm] HaC-Barrel 112 289 594 594

HaC-Barrel

	λ_{I} [cm]	X ₀ [cm]
Iron/Stainless Steel:	17	1.8
Cu Brass:	15.1	1.44

• Stainless Steel + scintillator (2cm tile thickness) + (6 $\times \lambda_{I}$)

-> 102cm Fe + 37(sampling) x 2cm Sc -> 176cm HaC

or Fe/LAr (H1/ATLAS type) – H1: $\sigma(E)/E = 12\%/\sqrt{(E)} \otimes 1\%$ (electron) | 50%/ $\sqrt{(E)} \otimes 2\%$ (pion) but almost excluded by modular design – see summary

- Hadron Calorimeters – all 6 λ_{I}

	inner radius	outer radius	half length	end Positio	on ±z (Higl	hQ²) [cm]
HaC-Barrel	112	289	594	594		
HaC-insert-2	21	110	88.5	594	(378)	

HaC-Barrel

	λı[cm]	X ₀ [cm]
Iron/Stainless Steel:	17	1.8
Cu Brass:	15.1	1.44

Stainless Steel + scintillator (2cm tile thickness) + (6 x λ_I) -> 102cm Fe + 37(sampling) x 2cm Sc -> 176cm HaC or Fe/LAr (H1/ATLAS type) - H1: $\sigma(E)/E = 12\%/\sqrt{(E)} \otimes 1\%$ (electron) | 50%/ $\sqrt{(E)} \otimes 2\%$ (pion) but almost excluded by modular design - see summary

HaC-insert-2 (movable)

Stainless Steel + scintillator and SS + MAPC (inner part) - to be simulated

 $LowQ^2$ HaC

HighQ² HaC

- Hadron Calorimeters – all 6 $\lambda_{\rm I}$

	inner radius	outer radius	half length	end Position ±z (HighQ²) [cm
HaC-Barrel	112	289	594	594
HaC-insert-2	21	110	88.5	594 (378)
HaC-insert-1	7	20	88.5	594 LowQ ² only

in any case: NO GAPS to adjacent Electromagnetic Calorimeter

HaC-Barrel

	λ _I [cm]	X ₀ [cm]
Iron/Stainless Steel:	17	1.8
Cu Brass:	15.1	1.44

- Stainless Steel + scintillator (2cm tile thickness) + (6 × λ_I)
 -> 102cm Fe + 37(sampling) × 2cm Sc -> 176cm HaC
 or Fe/LAr (H1/ATLAS type) H1: σ(E)/E = 12%/√(E) ⊗ 1% (electron) | 50%/√(E) ⊗ 2% (pion)
 but almost excluded by modular design see summary
- HaC-insert-2 (movable)
 - Stainless Steel + scintillator and SS + MAPC (inner part) to be simulated
- HaC-insert-1 for LowQ² (removable)
 - SS + Si-Gas Detector R/O (different options see i.e. Calice developments)
 - given the dimension/samples: better performance using Brass & 1cm si-gas detectors -> 9.2 x λ_{I}
 - or SS & 1cm si-gas detectors -> 8.1 × λ_{I}

HighQ² HaC

LowQ² HaC

• Acceptance – Tracker – θ (0.9⁰ – 179.1⁰), η (±4.8) – LowQ²

Acceptance – Tracker

 $-\theta$ ($0.9^{0} - 179.1^{0}$), η (± 4.8) $-LowQ^{2}$ $-\theta$ ($2.9^{0} - 177.1^{0}$), η (± 3.7) $-HighQ^{2}$

Kostka, Polini, Wallny

Acceptance – Tracker

- $-\theta (0.9^{\circ} 179.1^{\circ}), \eta (\pm 4.8) LowQ^{2}$ $-\theta (2.9^{\circ} - 177.1^{\circ}), \eta (\pm 3.7) - HighQ^{2}$
- Due to low material budget the multiple interactions shouldn't (or only little) deteriorate Δp_T/p_T² in fwd/bwd regions & low momenta;
 BUT simulations are mandatory taking into account all contributions; Asymmetry fwd/bwd tracking
 - different granularity/resolution of trackers fwd/bwd
 - requirements for eA: # of tracks / dense track structures ?

Acceptance – Tracker

- $-\theta (0.9^{\circ} 179.1^{\circ}), \eta (\pm 4.8) LowQ^{2}$ $-\theta (2.9^{\circ} - 177.1^{\circ}), \eta (\pm 3.7) - HighQ^{2}$
- Due to low material budget the multiple interactions shouldn't (or only little) deteriorate Δp_T/p_T² in fwd/bwd regions & low momenta;
 BUT simulations are mandatory taking into account all contributions; Asymmetry fwd/bwd tracking
 - different granularity/resolution of trackers fwd/bwd
 - requirements for eA: # of tracks / dense track structures ?
- Building the central track detector directly onto the beam pipe (see backup slide)

Acceptance – Tracker

- $-\theta (0.9^{\circ} 179.1^{\circ}), \eta (\pm 4.8) LowQ^{2}$ $-\theta (2.9^{\circ} - 177.1^{\circ}), \eta (\pm 3.7) - HighQ^{2}$
- Due to low material budget the multiple interactions shouldn't (or only little) deteriorate Δp_T/p_T² in fwd/bwd regions & low momenta;
 BUT simulations are mandatory taking into account all contributions; Asymmetry fwd/bwd tracking
 - different granularity/resolution of trackers fwd/bwd
 - requirements for eA: # of tracks / dense track structures ?
- Building the central track detector directly onto the beam pipe (see backup slide)
 - Modul: segment of beam pipe, cones, layers

Acceptance – Tracker

- $-\theta$ (0.9⁰ 179.1⁰), η (±4.8) LowQ² - θ (2.9⁰ - 177.1⁰), η (±3.7) - HighQ²
- Due to low material budget the multiple interactions shouldn't (or only little) deteriorate Δp_T/p_T² in fwd/bwd regions & low momenta;
 BUT simulations are mandatory taking into account all contributions; Asymmetry fwd/bwd tracking
 - different granularity/resolution of trackers fwd/bwd
 - requirements for eA: # of tracks / dense track structures ?
- Building the central track detector directly onto the beam pipe (see backup slide)
 - Modul: segment of beam pipe, cones, layers
 - even less material

Acceptance – Tracker

- $-\theta$ (0.9⁰ 179.1⁰), η (±4.8) LowQ² - θ (2.9⁰ - 177.1⁰), η (±3.7) - HighQ²
- Due to low material budget the multiple interactions shouldn't (or only little) deteriorate Δp_T/p_T² in fwd/bwd regions & low momenta;
 BUT simulations are mandatory taking into account all contributions; Asymmetry fwd/bwd tracking
 - different granularity/resolution of trackers fwd/bwd
 - requirements for eA: # of tracks / dense track structures ?
- Building the central track detector directly onto the beam pipe (see backup slide)
 - Modul: segment of beam pipe, cones, layers
 - even less material
 - even better angular acceptance lightweight design

Acceptance – Tracker

- $-\theta (0.9^{0} 179.1^{0}), \eta (\pm 4.8) LowQ^{2}$ $-\theta (2.9^{0} 177.1^{0}), \eta (\pm 3.7) HighQ^{2}$
- Due to low material budget the multiple interactions shouldn't (or only little) deteriorate Δp_T/p_T² in fwd/bwd regions & low momenta;
 BUT simulations are mandatory taking into account all contributions; Asymmetry fwd/bwd tracking
 - different granularity/resolution of trackers fwd/bwd
 - requirements for eA: # of tracks / dense track structures ?
- Building the central track detector directly onto the beam pipe (see backup slide)
 - Modul: segment of beam pipe, cones, layers
 - even less material
 - even better angular acceptance lightweight design

Exercise Track Resolution

Exercise Track Resolution

i.e. assuming / using (Glückstern relation):

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

Exercise Track Resolution

i.e. assuming / using (Glückstern relation):

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

• B = 2 T

 $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)
i.e. assuming / using (Glückstern relation):

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

• B = 2 T

 $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)

s-gas modul ~10⁰ inclined
 more track points for inclined tracks – extended track segments

i.e. assuming / using (Glückstern relation):

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

• B = 2 T

 $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)

- s-gas modul ~10⁰ inclined
 more track points for inclined tracks extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$

i.e. assuming / using (Glückstern relation):

- B = 2 T
 - $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)
 - s-gas modul ~10⁰ inclined more track points for inclined tracks – extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$
- track accuracy = 15µm -> track length 42 cm tracker layout: 54 cm (90⁰ track)

i.e. assuming / using (Glückstern relation):

- B = 2 T
 - $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)
 - s-gas modul ~10⁰ inclined more track points for inclined tracks – extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$
- track accuracy = 15µm -> track length 42 cm tracker layout: 54 cm (90⁰ track)
- track accuracy = 25µm -> track length 53.7 cm

i.e. assuming / using (Glückstern relation):

- B = 2 T
 - $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)
 - s-gas modul ~10⁰ inclined
 more track points for inclined tracks extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$
- track accuracy = 15µm -> track length 42 cm tracker layout: 54 cm (90⁰ track)
- track accuracy = 25µm -> track length 53.7 cm
- track accuracy = 15µm & $\theta = 5^{\circ}$ & N_{min} = 90 -> length ~39cm -> $\Delta p_T/p_T^2 = 0.045$ for $p_T = 10$ GeV

i.e. assuming / using (Glückstern relation):

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

• B = 2 T

 $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)

- s-gas modul ~10⁰ inclined
 more track points for inclined tracks extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$
- track accuracy = 15µm -> track length 42 cm tracker layout: 54 cm (90⁰ track)
- track accuracy = 25µm -> track length 53.7 cm
- track accuracy = 15µm & $\theta = 5^{\circ}$ & N_{min} = 90 -> length ~39cm -> $\Delta p_T/p_T^2 = 0.045$ for $p_T = 10$ GeV
- track accuracy = $25\mu m$ & $\theta = 3^{\circ}$ & $N_{min} = 60$ -> length ~20cm -> $\Delta p_T/p_T^2 = 0.34$ for $p_T = 10 \text{ GeV}$

i.e. assuming / using (Glückstern relation):

- B = 2 T
 - $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)
 - s-gas modul ~10⁰ inclined
 more track points for inclined tracks extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$
- track accuracy = 15µm -> track length 42 cm tracker layout: 54 cm (90⁰ track)
- track accuracy = 25µm -> track length 53.7 cm
- track accuracy = 15µm & θ = 5° & N_{min} = 90 -> length ~39cm -> $\Delta p_T/p_T^2$ = 0.045 for p_T = 10GeV
- track accuracy = $25\mu m$ & $\theta = 3^{\circ}$ & $N_{min} = 60$ -> length ~ 20cm -> $\Delta p_T/p_T^2 = 0.34$ for $p_T = 10 \text{ GeV}$
- track accuracy = 15µm & $\theta = 3^{\circ}$ & N_{min} = 60 -> length ~20cm -> $\Delta p_T/p_T^2 = 0.21$ for $p_T = 10$ GeV

i.e. assuming / using (Glückstern relation):

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

• B = 2 T

 $N_{min} = 56$ track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)

- s-gas modul ~10⁰ inclined
 more track points for inclined tracks extended track segments
- $\Delta p_T / p_T^2 = 0.05\%$
- track accuracy = 15µm -> track length 42 cm tracker layout: 54 cm (90⁰ track)
- track accuracy = 25µm -> track length 53.7 cm

• track accuracy = $15\mu m$ & $\theta = 5^{\circ}$ & $N_{min} = 90$ -> length ~39cm -> $\Delta p_T/p_T^2 = 0.045$ for $p_T = 10 \text{ GeV}$

- track accuracy = $25\mu m$ & $\theta = 3^{\circ}$ & $N_{min} = 60$ -> length ~20cm -> $\Delta p_T/p_T^2 = 0.34$ for $p_T = 10 \text{ GeV}$
- track accuracy = 15µm & θ = 3° & N_{min} = 60 -> length ~20cm -> $\Delta p_T/p_T^2$ = 0.21 for p_T = 10GeV
- track accuracy = 15µm & θ = 3⁰ & N_{min} = 110 -> length ~20cm -> $\Delta p_T/p_T^2$ = 0.15 for p_T = 10GeV

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9° 179.1°), η (±4.8)
 - EmC-insert-2 θ (3.2[°] 176.8[°]), η (±3.6)
 - HaC-insert-2 θ ($2.8^{\circ} 177.2^{\circ}$), η (±3.7)

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9⁰ 179.1⁰), η (±4.8)
 - EmC-insert-2 θ (3.2° 176.8°), η (±3.6)
 - HaC-insert-2 θ ($2.8^{\circ} 177.2^{\circ}$), η (±3.7)
- Acceptace Calorimeter HighQ²
 - EmC-insert-2 θ (9.4° 171.6°), η (±2.5)
 - HaC-insert-2 θ ($7.2^{\circ} 172.8^{\circ}$), η (±2.8)

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9⁰ 179.1⁰), η (±4.8)
 - EmC-insert-2 θ (3.2^o 176.8^o), η (±3.6)
 - HaC-insert-2 θ (2.8^o 177.2^o), η (±3.7)
- Acceptace Calorimeter HighQ²
 - EmC-insert-2 θ (9.4° 171.6°), η (±2.5)
 - HaC-insert-2 θ (7.2° 172.8°), η (±2.8)
- For the geometry given:

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9⁰ 179.1⁰), η (±4.8)
 - EmC-insert-2 θ (3.2^o 176.8^o), η (±3.6)
 - HaC-insert-2 θ ($2.8^{\circ} 177.2^{\circ}$), η (±3.7)
- Acceptace Calorimeter HighQ²
 - EmC-insert-2 θ (9.4° 171.6°), η (±2.5)
 - HaC-insert-2 θ (7.2° 172.8°), η (±2.8)
- For the geometry given:
- Hadronic Calorimeter $6 9.2 \times \lambda_{I}$ Fe/Cu & different det./R/O

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9⁰ 179.1⁰), η (±4.8)
 - EmC-insert-2 θ (3.2^o 176.8^o), η (±3.6)
 - HaC-insert-2 θ ($2.8^{\circ} 177.2^{\circ}$), η (±3.7)
- Acceptace Calorimeter HighQ²
 - EmC-insert-2 θ (9.4° 171.6°), η (±2.5)
 - HaC-insert-2 θ (7.2° 172.8°), η (±2.8)
- For the geometry given:
- Hadronic Calorimeter $6 9.2 \times \lambda_{I}$ Fe/Cu & different det./R/O
- Electromagnetic Calorimeter $20 \times X_0$ Pb/W & different det./R/O

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9⁰ 179.1⁰), η (±4.8)
 - EmC-insert-2 θ (3.2^o 176.8^o), η (±3.6)
 - HaC-insert-2 θ ($2.8^{\circ} 177.2^{\circ}$), η (±3.7)
- Acceptace Calorimeter HighQ²
 - EmC-insert-2 θ (9.4° 171.6°), η (±2.5)
 - HaC-insert-2 θ (7.2° 172.8°), η (±2.8)
- For the geometry given:
- Hadronic Calorimeter $6 9.2 \times \lambda_{I}$ Fe/Cu & different det./R/O
- Electromagnetic Calorimeter $20 \times X_0$ Pb/W & different det./R/O

- Acceptance Calorimeter LowQ²
 - EmC-insert-1 θ ($1.1^{\circ} 178.9^{\circ}$), η (± 4.7)
 - HaC-insert-1 θ (0.9⁰ 179.1⁰), η (±4.8)
 - EmC-insert-2 θ (3.2^o 176.8^o), η (±3.6)
 - HaC-insert-2 θ ($2.8^{\circ} 177.2^{\circ}$), η (±3.7)
- Acceptace Calorimeter HighQ²
 - EmC-insert-2 θ (9.4° 171.6°), η (±2.5)
 - HaC-insert-2 θ (7.2° 172.8°), η (±2.8)
- For the geometry given:
- Hadronic Calorimeter $6 9.2 \times \lambda_{I}$ Fe/Cu & different det./R/O
- Electromagnetic Calorimeter $20 \times X_0$ Pb/W & different det./R/O
- For both types of Calorimeters: fwd/bwd asymmetry taken into account by granularity adjustments
 - transversal & longitudinal

Some Essentials

Time constraints

- CMS-type logistics => start to assemble the detector "upstairs"
 - $^{\tt D}$ ~5 years before you go for the real installation in the cavern
 - ~2-3 years for lowering of moduls (HaC-Barrel see backup), installation, tests
- Dimensions of strong focussing magnets (\emptyset = 30cm now) and the coil of the 2T-Solenoid have to be defined
 - after detailed machine/physics studies
 - option for an dipol field added to solenoidal field has to be evaluated
- Background, Collimators (backscattering)
- Manpower an issue;
 Collaboration with ongoing projects (mainly ILC) a.s.a.p

Thank You

Backup

LowQ² L1

HighQ² L1

371

Virtual goal: ATLAS pixel vertex

- Ladder strings fixed to end cones
- Integration of beam pipe, end cones & pixel vertex detector
- 5 double layers seems feasible

Vision of:

Harry van der Graaf NIKHEF, Amsterdam

ATLAS Upgrade Workshop Dec 7, Liverpool, 2006

NODE TEMPERATURES		
TEMPERATURE - MAG MIN: 2.06E+01 MAX: 2.20E+01		VALUE OPTION:ACTUAL
		2.20D+01
	Goat 1 stave	
	∆Tmax=2°C	2.18D+01_
		2.17D+01_
		2.15D+01_
		5.445-04
		2.140+01_
		2,130+01
•Applied power 0.2 Watt per chip		2.11D+01
•Cooling temperature 20°C		
•CO ₂ Heat transfer: 12000 W/mK		2.10D+01
•Glue joints 50 mu		
•λ _{aluminium} =120 W/mK		2.08D+01
•λ _{silicon} =120 W/mK		
•λ _{stainless} =16 W/mK		2.07D+01
•λ _{carbonfibre} =10 W/mK		
•λ _{glue} =0.35 W/mK		2.06D+01

The CALICE Subsystems

- Electromagnetic Calorimeter
 - Silicon Tungsten: Si-Pad detectors
 - MAPS Option
 - Scintillator-Tungsten
- Hadronic Calorimeter
 - Analog: Steel Scintillator tiles with SiPM readout
 - Digital: Steel RPC / MicroMegas / GEM
- Tailcatcher:
 - Analog: Steel Scintillator strips with SiPM readout

CALICE Calorimeter Setup

Si-W ECAL $1 \times 1 \text{ cm}^2$ lateral segmentation 30 layers, ~ 0.9 λ , 30 X₀ ~ 10 k channels

Analog HCAL 3x3 - 12x12 cm² lateral segmentation 38 layers, ~ 4.5 λ ~ 8 k channels Tail Catcher / Muon Tracker
5 x 100 cm² Scintillator Strips
16 layers
~ 300 channels

02.09.2008

Changing Setup: Scintillator ECAL

- First tests in DESY test beam in 2007
- Now installed in CALICE setup at FNAL, replacement for Si-W ECAL, beam time starting tomorrow

- Tungsten absorber
- Scintillator with MPPC readout
 - $1 \times 5 \text{ cm}^2$, 3.5 mm thick scintillator strips
 - embedded wavelength shifting fiber
 - three different scintillator types tested

02.09.2008

New Si-W Concepts: MAPS

- MAPS instead of Si Pads:
 - Determine Energy by counting particles, not by measuring energy deposit
 - Extreme granularity needed to preserve linearity
 - ▶ 50 x 50 μ m² pixels
 - binary readout
 - electronics integrated into pixel

Frank Simon: CALICE - Calorimeters for the ILC Stka, Polini, Wallny LHeC Convenor Meeting, 15-16th December 2008 02.09.2008

Changing Setup: Digital HCAL

- Digital (or semi-digital) HCAL
 - ~ $| x | cm^2 pads$
 - gas detector readout, different technologies being explored

GEM (Double GEM, ThickGEM, ...)

Frank Simon: CALICE - Calorimeters for the ILC LHeC Convenor Meeting, 15-16th December 2008

02.09.2008

35