## QCD & Electroweak @ LHeC: Wishlist for studies

- SM Higgs and top production physics potential
- Expected electroweak parameters precision (need to know polarisation)
- ✓ PDF precisions:
  - Inclusive DIS: further refined & alternative estimates (from other PDF fitter groups)
  - Direct proton gluon density determinations from jets (high x), charm (low x)
  - Clarification of transition from massive to massless regime for charm and beauty
- alpha\_s from jets (exploiting NNLO calculations)

✓ QCD dynamics and PDFs from final states: jets, heavy flavours, prompt photons, DVCS, vector mesons, diffraction

✓ Look for QCD expected, special or novel features: BFKL – forward jets at low x, intrinsic charm, instantons

✓ For all studies: matched to expected (refined) detector acceptance, energy, momentum & vertexing resolutions ... and accelerator energy & lumi prospects

#### **Physics @ the LHeC**

## Summary report of Elektroweak and precision QCD group

<u>Olaf Behnke</u>, Paolo Gambino, Thomas Gehrmann LHeC workshop, Divonne, 2. Sep 2008

#### Electroweak & QCD Wishlist for Lhec

WW-> Higgs

Precise electroweak couplings aq.vq



## NC couplings to light quarks

#### **unpol:** $\sigma(e^+) - \sigma(e^-) \rightarrow a_e k_Z x F_3^{\gamma Z} \propto e_q a_q$ **pol:** $\sigma(P_R) - \sigma(P_L) \rightarrow a_e k_Z F_2^{\gamma Z} \propto e_q v_q$ ZEUS ZEUS u-quark d-quark **>** ~ ZEUS-pol-v\_-v\_d-a\_-a\_-PDF (prel.) ZEUS-pol-v\_-v\_d-a\_-PDF (prel.) total uncert. total uncert. uncorr. uncert. uncorr. uncert. H1 prel. (HERA I+II 94-05) H1 prel. (HERA I+II 94-05) 0.5 0.5 0 0 -0.5 -0.5 SM SM CDF CDF 68% CL 68% CL LEP - LEP --0.5 0.5 -1 0.5 0 -1 -0.5 0 $\mathbf{a}_{u}$ $\mathbf{a}_{d}$

Improvements:  $v_q \rightarrow \text{polarization} \\ a_q \rightarrow \text{luminosity}$ 

Degrassi

Degrassi

## Z' physics@ LHeC



Z' effects can show up in NC asymmetries from the interference with SM contributions

$$A^{\pm} = \frac{2}{P_R - P_L} \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)} \approx k_Z \frac{F_2^{\gamma Z}}{F_2^{\gamma}} + k_{Z'} \frac{F_2^{\gamma Z'}}{F_2^{\gamma}} \propto k_Z v_q + k_{Z'} v_q'$$

 $\sqrt{s} = 1.5 \text{ TeV}, \ M_{Z'} = 1.2 \text{ TeV}, \ x \ge 0.25, \ y \ge 0.1$  Degrassi



E<sub>6</sub> models

6

### ultraprecise alpha\_s from inclusive DIS @ LHEC





#### Large-x ( $\gtrsim 10^{-2}$ ) convergence of P series: effect. N<sup>3</sup>LO scaling violations



Gold plated alpha\_s: ~1% scale uncertainty

## ultraprecise alpha\_s from inclusive DIS @ LHEC

#### Theory model uncertainties: need to beat them down

| analysis uncertainty                         | $+\delta \alpha_s$ | $-\delta \alpha_s$ |   |
|----------------------------------------------|--------------------|--------------------|---|
| $Q_{min}^2 = 2 \text{ GeV}^2$                |                    | 0.00002            | K |
| $Q_{min}^2 = 5 \text{ GeV}^2$                | 0.00016            |                    |   |
| parameterisations                            | 0.00011            |                    |   |
| $Q_0^2=2.5~{ m GeV^2}$                       | 0.00023            |                    |   |
| $Q_0^2 = 6 { m GeV^2}$                       |                    | 0.00018            |   |
| $y_e < 0.35$                                 | 0.00013            |                    |   |
| x < 0.6                                      | 0.00033            |                    |   |
| $y_{\mu} > 0.4$                              | 0.00025            |                    |   |
| $x > 5 \cdot 10^{-4}$                        | 0.00051            |                    |   |
| uncertainty of $\overline{u} - \overline{d}$ | 0.00005            | 0.00005            |   |
| strange quark contribution $\epsilon = 0$    | 0.00010            |                    |   |
| $m_c + 0.1  \text{GeV}$                      | 0.00047            |                    |   |
| $m_c - 0.1 \text{GeV}$                       |                    | 0.00044            |   |
| $m_b + 0.2  \text{GeV}$                      | 0.00007            |                    |   |
| $m_b - 0.2  { m GeV}$                        |                    | 0.00007            |   |
| total uncertainty                            | 0.00088            | 0.00048            |   |
|                                              |                    |                    |   |

Amongst others also to please Frank Wilczek



## g(x) for x > 0.1



Excitation of Intrinsic Heavy Quarks in Proton

Amplitude maximal at small invariant mass, equal rapidity



**Coulomb Exchange analogous to diffractive excitation** 

# Electromagnetic Tri-Jet Excitation of Proton $ep \rightarrow e$ jet jet jet



Detector expert notes from the physics session

Many noble physics wishes for x-> 1, dare say this will provide quite exciting challenges for (very) forward instrumentation at the LheC (acceptance, fine granularity, energy flow, heavy flavour tagging)

## Effective b-parton density in the proton @ x=0.01



#### Precise valence quarks down to x=0.001



 $xF_3^{\gamma Z} = 2x[e_u a_u(u_v + \Delta_u) + e_d a_d(d_v + \Delta_d)]$ 

## Strange quark distribution



Note: s(x) could be also determined at LHC in sg -> cW

$$W^{+}s \rightarrow c$$

$$1 f b^{-1}$$

$$\varepsilon_{c} = 0.1$$

$$\varepsilon_{q} = 0.01$$

$$\delta_{syst} = 0.1$$

$$\circ - \vartheta_{h} \ge 1^{o}$$

$$\bullet - \vartheta_{h} \ge 10^{o}$$

#### Towards lower/lowest x: Precise Fl





## Forward jets at LHeC



H. Jung, Small x parton dynamics, LHeC workshop September 1-3 2008,

20

## Results: Charm Q<sup>2</sup>: [2-5 GeV<sup>2</sup>]; pt\_c>1.5, |h\_c|<1.5



21

## Conclusions

✓ Electroweak physics: High lumi and high degree of polarisation are quite essential to make an impact with the LHeC.

✓ QCD: Many interests & hopes for filling essential gaps of our proton knowledge, e.g. gluon density at large x, strange sea, effective b density, etc...

✓ Physics at largest x require excellent detector/acceptance/granularity in the forward region, also true for large part of final state physics at low x

✓ Studies presented here were often just a first start up, and should be continued – target goal DIS 2009 or earlier

## Some further studies/ideas presented at this workshop

✓ Thomas Schoerner Sadeníus: Jets cross sections in high Q2 DIS – 10-100 times larger at LheC than at HERA and reaching up to a few 100 GeV in pt (see next slide)

Juan Rojo: Neural net pdf fits --> will be interesting to see how the uncertainties could change including the LheC kinematic region (especially lower x)

✓ Emmanuelle Perez: New physics in s-channel contact interaction qqbar --> ll (=Drell Yan) at LHC could be difficult to identify at the LHC .. but possible to identify in inclusive (t-channel) eq -> eq DIS at the LHEC.

Many further intriguing ideas by Stan Brodsky (see next but one slide) :-)

## **INCLUSIVE JETS: DOUBLE-DIFFERENTIAL**



## Novel Aspects of QCD in ep scattering

- Clash of DGLAP and BFKL with unitarity: saturation phenomena; off-shell effects at high x
- Heavy quark distributions do not derive exclusively from DGLAP or gluon splitting -- component intrinsic to hadron wavefunction: Intrinsic c(x,Q), b(x,Q), t(x,Q):
- Hidden-Color of Nuclear Wavefunction
- Antishadowing is quark specific!
- Polarized u(x) and d(x) at large x; duality
- Virtual Compton scattering : DVCS, DVMS, GPDs; J=o fixed pole reflects elementary source of electromagnetic current
- Initial-and Final-State Interactions: leading twist SSA, DDIS
- Direct Higher-Twist Processes; Color Transparency

ECFA-CERN LHeC Workshop Divonne, September 1, 2008

LHeC Physics Overview

Stan Brodsky, SLAC

#### Introduction

#### Bartels

What is fundamental about QCD at high energies:

- structure of the proton at high energies reveals the nature of strong forces aspects of confinement
- at high energies standard model (QCD) must merge into any theory beyond the standard model. Some structure has already been made visible: integrability in evolution equations.

Regge limit contains information not accessible in the short distance (collinear) limit: unitarity; interface between short and long distance behavior. Starting point: BFKL

Experience has shown that deep inelastic ep-scattering is a very good place: perturbative starting point, variation of photon virtuality  $Q^2$  allows to interpolate between short and long distance regimes.

## For discussion with the detector group

- ✓ Precision silicon tracking for c- and b-lifetime tag:
  - ✓ 30<theta<150: highest quality desirable as always, e.g. For F2cc & F2bb at medium Q2
  - ✓ 10 < theta < 30: highest quality e.g. For b from ww -> H -> bb or b from top decays or new very heavy resonances
  - Theta <10: for many final state physics c or b would add 'real flavour'/information, e.g. Separating quark from gluon jets etc. how far can/need we go down in theta?