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LHC Detectors

General purpose detectors
(good for everything...)

] _

dedicated for dedicated for
Heavy lon collisions b-physics
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ATLAS (A Toroidal LHC ApparatuS)
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LARGE Detectors

¢ Everything is LARGE at the LHC...

e "

Building 40:
ATLAS + CMS
“headquarters”
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CMS (Compact Muon Spectrometer)

main assembly on surface,
then lowering into cavern in
210 m?2 silicon detectors 5 big parts by ~2500t crane
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CMS Lowering of 2000 t Central Part

CMSeye 28 February 2007 18:23
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Argentina
Armenia Netherlands

Australia Morway
Austria Poland
Azerbaijan Portugal
Belarus . Romania
Brazil Russia
Canada Serbia
Chile Slovakia

China Slovenia
Colombia -Enuth Africa
Czech Republic Sy o

Collaboration

38 countries, 177 institutes,
3000 researchers (1000 PhD students)
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Particle Physics Methods

Einstein
(1905):

Matter is
concentrated energy!

£
..‘.‘ . 1[ l.! - -”_- o
detector to

Matter can be transformed measure "W
into energy and back! outgoing particles JA

|E:m02|

¢ We use this at a particle accelerator
- protons are accelerated = energy
- kinetic energy is transformed into matter at the collision

- new particles are being produced (new matter)
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Detector Challenges at LHC

¢ High energy collisions

- sufficiently high momentum resolution up to TeV scale
¢ High luminosity (high interaction rate)

- high rate capabilities, fast detectors (25 ns bunch crossing rate)
¢ High particle density

- high granularity, sufficiently small detector cells to resolve particles

¢ High radiation (lots of strongly interacting particles)

radiation mainly due to particles emerging from collisions, not machine background

- radiation-hard detectors and electronics (have to survive ~10 years)

¢ LARGE collaborations!!!
= ~0(3000) physicists for ATLAS and CMS each

- communication, sociological aspects

exponential raise of meetings, phone + video conferences...
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Radiation Doses at LHC

¢ ~2x10°Gray /r;°/year at LHC design luminosity

where r;[cm] = transverse distance to the beam

¢ Lots of R&D over >10 years to develop rad.-hard silicon
detectors, gaseous detectors and electronics

(1 MeV n,/cm®/yr)

ATLAS
neutron fluences

Ricm)

§ 100 200 400 200
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Challenging Conditions: Pile-up
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How to Select Interesting Events?

¢ Bunch crossing rate: 40 MHz, ~20 interactions per BX (o°evts/s)
- can only record ~300 event/s (1.5 MB each), still ~450 MB/s data rate
¢ Need highly efficient and highly selective TRIGGER

- raw event data (1 PB/s) are stored in pipeline until trigger decision

trigger

\\ YES
PIPELINE l ’
T NO

10° evts/s \trash , 102 evts/s

¢ ATLAS trigger had 3 levels in Run-1 (CMS similar with 2 levels)
- Level-1: hardware, ~3 pys decision time, 40 MHz - 75 kHz

save

v

Detector

- Level-2: software, ~40 ms decision time, 75 kHz » 2 kHz

- Level-3: software, ~4 s decision time, 2 kHz = 300 Hz
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A typical Particle Detector

¢ Cut-away view of ATLAS

Muon
Spectrometer

Hadronic
Calorimeter

Electromagnetic
Calorimeter

Solenoid magnet

Tracking

Transition
Radiation
Tracker

detector
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High Energy Collider Detectors

¢ Tracking Detector (or Tracker) = momentum measurement

- closest to interaction point: vertex detector (often silicon pixels)

measures primary interaction vertex and secondary vertices from decay particles

- main or central tracking detector

measures momentum by curvature in magnetic field

¢ Calorimeters = energy measurement

- electro-magnetic calorimeters (light particles: e, e*, y)

measures energy of light EM particles (electrons, positrons, photons) based on electro-
magnetic showers by bremsstrahlung and pair production

two concepts: homogeneous (e.g. CMS) or sampling (e.g. ATLAS, ILD, SiD, CLIC)
- hadron calorimeters (heavy hadronic particles: &, K, p, n)

measures energy of heavy (hadronic) particles (pions, kaons, protons, neutrons) based
on nuclear showers created by nuclear interactions

¢ Muon Detectors = momentum measurement for muons (more precise)

- outermost detector layer, basically a tracking detector
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Tracker Technologies

- 3 major technologies of tracking detectors

« Gaseous detectors

- lonization in gas

typically ~100 e/cm = not sufficient to create significant signal height above noise for
standard amplifiers

- typical amplifier noise = some 100...1000 ENC (equivalent noise charge, in electrons)
—= requires gas amplification ~10% to get enough signal over noise (S/N)

« Silicon detectors (solid state detectors)

- creation of electron — hole pairs in solid state material
typically ~100 e~ - hole pairs/um = 10 more than in gaseous detectors

- 300 um thick detector creates high enough signal w/o gas amplification
~30'000 charge carriers per detector layer, noise ~1000 ENC, S/N ~ 30:1

¢ rarely used: fiber trackers
- scintillating fibers
scintillation light detected with photon detectors (sensitive to single electrons)
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ATLAS Inner Tracker
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The ATLAS Pixel Detector

¢ Re-insertion in December 2013 during Long Shutdown 1
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CMS Full Silicon Tracker

; W" = *‘mn\\ .

P R\ \ ¢ 3-layers Si Pixel

¢ 10-layers Silicon
Strips
= 210 m?, largest

silicon detector
ever built

Tracker Inner Barrel TIB

,
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Material Budget

¢ Tracking Detectors should be light-weighted and thin
- multiple scattering by material degrades resolution at low momenta
- unwanted photon conversions in front of calorimeters

- material often very inhomogeneous (in particular Si detectors)

¢ Power & cooling adds most of the material

not the Si sensor material
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h
o

B services
OtrT
EscT
B rixel
[CJBeam-pipe B

Radiation length {Xo)
o
| T T1 I T

—
Tr

o
n
T

ol FETE BT T BT
® 05 1 15 2 25 3 35 4 45 5
ml

|| radiation length interaction length

<1 ~ 0.2 Xo ~ 0.05 )\
<33 < 0.5 X < 0.2

ATLAS + Detector Introduction Michael Hauschild - CERN, page 19



Magnet Concepts

solenoid

ﬂ [\

mggrwet
= -~ ‘L coil

N

\/ /r]

B

+ large homogenous field inside coil

- needs iron return yoke (magnetic shortcut)
limited size (cost)
coil thickness (radiation lengths)

CMS, ALICE, LEP detectors

ATLAS + Detector Introduction

at LHC experiments

(air-core) toroid

+ can cover large volume

+ air core, no iron, less material

- needs extra small solenoid for general tracking
- non-uniform field

- complex structure

ATLAS
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ATLAS and CMS Coils

o L7 .,:',-

CMS solenoid
(5 segments)

ATLAS barrel toroid coils
autumn 2005

CEA - Saclay 12/98
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CMS: Homogeneous EM Calorimeter

« Clear advantage: good energy resolution

- the entire shower is kept in active detector material

no shower particle is lost in passive absorber

¢ Disadvantages

- limited granularity, no information on shower shape in longitudinal
direction (along particle flight direction)

position information is useful to resolve near-by energy clusters,
e.g. single photons versus two photons from n® decay

Two overlapping CMS PbWOQO, crystal

N photons from =° decay

g

i Single photon

Lead Tungstate crystal SIC-78
from China

ol . N

Ap X AB =1°x 1° Ap X AB=1°x1°

N>

p=8.28 g/lcm?® X,=0.89 cm

dense, transparent materials needed with
short radiation length and high light yield |
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ATLAS: Sampling EM Calorimeter

« Typical sampling calorimeters use iron or lead absorber
material, variety of detectors in between possible

- gas detectors (MWPCSs), plastic scintillators, liquid noble gases (LAr, LKr)
¢ LAr with “acordeon” shaped Fe-Pb-Fe absorbers at ATLAS

ATLAS LAr calorimeter

- LAr is ionized by charged shower particles

- Charge collected on pads

ionization chamber, no “gas” amplification
pads can be formed as needed - high granularity

= acordeon structure |
helps to avoid dead N Y
zones (cables etc.)

A

simulated shower
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ATLAS/CMS Hadron Calorimeters

« Energy resolution much worse than for electromagnetic
calorimeters

larger fluctuations in hadronic shower
usually only a few nuclear interactions length deep (5 -6 1)

« Both ATLAS and CMS use scintillators as detector material

- need many optical fibers to transport light from scintillators to photo
detectors

ATLAS CMS
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ATLAS Muon Detector

¢ Muon detectors are tracking detectors (e.g. wire chambers)
- they form the outer shell of the (LHC) detectors
- they are not only sensitive to muons (but to all charged particles)!

- Just by “definition”: if a particle has reached the muon detector
- it's considered to be a muon

- all other particles should have been absorbed in the calorimeters
ATLAS Muon Detector Elements

¢ Challenge for muon detectors

large surface to cover (outer shell) / o

keep mechanical positioning oo

stable over time : _ \ R
Aluminum tubes with central]\

wire filled with 3 bar gas

— 1200 chambers with 5500 m2 <= Cross plat

| " In-plane alignment
~ Longitudinal beam

- needs also good knowledge of
(inhomogeneous) magnetic field
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ATLAS Detector Status

(a 100 megapixel camera with 40 MHz framerate = 1 PB/second)

Subdetector Number of Channels | Approximate Operational Fraction

Pixels

SCT Silicon Strips

TRT Transition Radiation Tracker
LAr EM Calorimeter

Tile calorimeter

Hadronic endcap LAr calorimeter
Forward LAr calorimeter

LVL1 Calo trigger

LVL1 Muon RPC trigger

LVL1 Muon TGC trigger

MDT Muon Drift Tubes

CSC Cathode Strip Chambers
RPC Barrel Muon Chambers

TGC Endcap Muon Chambers
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92 M
6.3 M
350 k
170 k
4900
5600
3500
7160
370 k
320 k
357 k
31k
370 k

320 k

98.2%
98.6%
97.3%
100%
99.2%
99.6%
99.8%
100%
99.75%
100%
99.7%
98.4%
96.6%

99.6%
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ATLAS/CMS Concept Overview

¢ The two large LHC detectors have somewhat
different concepts

- ATLAS

small inner tracker with moderate field (small 2 T solenoid)
electron identification by transition radiation tracker

sampling calorimeter with high granularity outside solenoid
air-core toroid system for good muon momentum measurement

emphasis on granular calorimeter and good muon measurement

- CMS

large inner tracker with high B-field (large 4 T solenoid)
no dedicated particle identification detector

homogeneous crystal calorimeter with good energy resolution inside solenoid
emphasis on good general tracking and good energy resolution

¢ However, both detector concepts have very similar
performance for Higgs physics (efficiency, mass resolution...)
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The ATLAS Site 2005

CERN Main Entrance B LHC CoolingTowers

: : ATLAS Main Hall
Globe of Innovation & Science ATLAS Control Room

and Visitor Centre
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ATLAS Underground Cavern

huge cavern + surface buildings,

2 access shafts 18m + 12m O,
2 small shafts for elevators + stairs

Length =55m
Width =32 m
Height =35 m
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Ly ;__:‘.. AT

First Digging started in 1998

=== Gallo-roman remains
on future CMS site

Roman
coins

ATLAS cavern
September 2000
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Start of ATLAS Detector Construction

Transport and lowering of first
superconducting Barrel Toroid coll

ATLAS + Detector Introduction Michael Hauschild - CERN, page 31



ATLAS + Detector Introduction Michael Hauschild - CERN, page 32



Detector Technology and Arts
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The flrst nggs at LHC (4 Aprll 2008)
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