ASACUSA Status

Atomic Spectroscopy And Collisions Using Slow Antiprotons

120th Meeting of the SPSC January 19, 2015

Ryugo S. Hayano, University of Tokyo Spokesperson, ASACUSA

1. Toward $\overline{\mathbf{H}}$ GSHFS Spectroscopy

2. $\overline{\mathbf{p}} \mathrm{He}$ two-photon laser spectroscopy
~5 weeks
3. $\overline{\mathbf{p}}-\mathrm{C}$ annihilation cross section at 5.3 MeV
~2 weeks

1. Toward $\overline{\mathrm{H}}$ GSHFS Spectroscopy

HYDROGEN

TRANSITION FREQUENCY (Hz)

$\overline{\mathrm{H}}$ GSHFS Spectroscopy: in 2015

1. transportation of $20 \mathrm{eV} \overline{\mathrm{p}}$ s to the double-cusp trap
2. reconstruction of annihilation vertices with the micromegas detector
3. synthesis of $\overline{\mathrm{H}}$ atoms - formation rate ~ 15 \%
4. $\overline{\mathrm{H}}$ transport and detection
5. σ_{1} hyperfine frequency of ordinary H atoms measured to $<10 \mathrm{ppb}$

$\overline{\text { H }}$ GSHFS Spectroscopy: in 2015

1. transportation of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the double-cusp trap
2. reconstruction of annihilation vertices with the micromegas detector
3. synthesis of $\overline{\mathrm{H}}$ atoms - formation rate $\sim 15 \%$
4. $\overline{\mathrm{H}}$ transport and detection

First
5. σ_{1} hyperfine frequency of ordinary H atoms measured to <10 ppb

Two accessible transitions, $\sigma_{1} \& \pi_{1}$

σ_{1} - less sensitive to $B_{\text {ext }}$
π_{1} - more sensitive to $B_{\text {ext }}$
\quad \& possible CPTV effects
Π_{1} - more sensitive to $B_{\text {ext }}$
\& possible CPTV effects

high-field
$\oint \downarrow^{\text {seekers }}$
"H" setup (same cavity, same sextupole as the $\overline{\mathrm{H}}$ exp)

a typical Hydrogen σ_{1} resonance scan

- For each scan, a fixed B-field (-250 ~ $250 \mu \mathrm{~T}$) applied by Helmholtz coils
- cavity frequency was scanned
- hydrogen detection rate measured with QMS

\leftarrow Fit result

$$
v_{c}-v_{\text {lit }}=9336 \pm 71 \mathrm{~Hz}
$$

zero-field extrapolation

- One of 10 zero-field extrapolation sets
- Fit result: $v_{0}-v_{\text {lit }}=5.7 \pm 23.6 \mathrm{~Hz}, x^{2} / n$. d.f. $=65.3 / 57$
zero field extrapolation

soon to be published

- Best beam value up to date

$$
\begin{aligned}
& \nu=1420.40573(5) \mathrm{MHz} \\
& \frac{\Delta \nu}{\nu}=3.5 \times 10^{-8} \\
& \text { Kusch, Phys. Rev. 100, 4, (1955) }
\end{aligned}
$$

- Maser experiments

$$
\begin{aligned}
& \nu=1420.405751768(1) \mathrm{MHz} \\
& \frac{\Delta \nu}{\nu}=7 \times 10^{-13} \\
& \quad \text { N.F. Ramsey et al., Quantum } \\
& \text { Electrodynamics, World Scientific, } \\
& \text { Singapore, 1990, p. } 673
\end{aligned}
$$

preliminary results:
$v=1420.4057 \ldots \mathrm{MHz}$ statistical error $\sim 3 \mathrm{~Hz}$
systematic error $\sim 2 \mathrm{~Hz}$
rel. precision: < 3 ppb
factor >10 better than Kusch et al.

precision π_{1} measurement planned in 2016

Hydrogen beam setup in building B275

π_{1} measurement needs better $B_{\text {ext }}$ control

$\overline{\mathbf{H}}$ GSHFS Spectroscopy: in 2015

1. transportation of $20 \mathrm{eV} \overline{\mathrm{p}}$ s to the double-cusp trap
2. reconstruction of annihilation vertices with the micromegas detector
3. synthesis of $\overline{\mathrm{H}}$ atoms - formation rate $\sim 15 \%$
4. \bar{H} transport and detection
5. σ_{1} hyperfine frequency of ordinary H atoms measured to <10 ppb

distance from the mixing position
Cavity: +1840 mm
Sextupole: +2628mm
$\overline{\mathrm{H}}$ detetor: +3739 mm

minimize energy deposition to the e^{+}plasma

optimizing $\overline{\mathrm{p}}$-extraction scheme

potential in the $\overline{\mathrm{p}}$ catching trap

$\overline{\mathbf{p}}$ time distribution downstream

pulsed coil for 20-eV $\overline{\mathrm{p}}$ transport

$\overline{\text { H }}$ GSHFS Spectroscopy: in 2015

1. transportation of $20 \mathrm{eV} \overline{\mathrm{p}}$ s to the double-cusp trap
2. reconstruction of annihilation vertices with the micromegas detector
3. synthesis of \bar{H} atoms - formation rate $\sim 15 \%$
4. $\overline{\mathrm{H}}$ transport and detection
5. σ_{1} hyperfine frequency of ordinary H atoms measured to $<10 \mathrm{ppb}$

micromegas around the 2-cusp vacuum tube

micromegas around the 2-cusp vacuum tube

time evolution of annihilation positions during $\overline{\mathrm{p}}-\mathrm{e}^{+}$mixing

time evolution of annihilation positions during $\overline{\mathrm{p}}-\mathrm{e}^{+}$mixing
(a)

time evolution of annihilation positions during $\overline{\mathrm{p}}-\mathrm{e}^{+}$mixing

(a)

(b)

time evolution of annihilation positions during $\overline{\mathrm{p}}-\mathrm{e}^{+}$mixing

(a)

(b)

$\overline{\mathrm{H}}$ GSHFS Spectroscopy: in 2015

1. transportation of $20 \mathrm{eV} \overline{\mathrm{p}}$ s to the double-cusp trap
2. reconstruction of annihilation vertices with the micromegas detector
3. synthesis of $\overline{\mathrm{H}}$ atoms - formation rate $\sim 15 \%$
4. $\overline{\mathrm{H}}$ transport and detection
5. σ_{1} hyperfine frequency of ordinary H atoms measured to <10 ppb

with $20 \mathrm{eV} \overline{\mathrm{p}}$ - high $\overline{\mathrm{H}}$ formation rate in early times

with $20 \mathrm{eV} \overline{\mathrm{p}} \mathrm{s}$ - high $\overline{\mathrm{H}}$ formation rate in early times

Field ionizer chamber between cusp \& cavity

with $20 \mathrm{eV} \overline{\mathrm{p}} \mathrm{s}$ - high $\overline{\mathrm{H}}$ formation rate in early times

on-wall annihilations
on-axis annihilations

- The total number of field-ionized
$\overline{\mathrm{H}} s \sim 390$ (in 40 s)
- $\boldsymbol{\overline { p }} \boldsymbol{\rightarrow} \overline{\mathrm{H}}$ efficiency $\sim 16 \%$
(assuming isotropic emission)

$\overline{\text { H }}$ GSHFS Spectroscopy: in 2015

1. transportation of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the double-cusp trap
2. reconstruction of annihilation vertices with the micromegas detector
3. synthesis of $\overline{\mathrm{H}}$ atoms - formation rate $\sim 15 \%$
4. $\overline{\mathrm{H}}$ transport and detection
5. σ_{1} hyperfine frequency of ordinary H atoms measured to <10 ppb
$\overline{\mathrm{H}}$ detector @ 3.7m (Solid angle ~0.004\%)

(b)

$\overline{\mathrm{H}}$ detector @ 3.7m (Solid angle ~0.004\%)

(b)

cosmic vs $\overline{\mathrm{H}}(\overline{\mathrm{p}})$

BGO energy deposit and hodoscope opening angle

F GSHFS Spectroscopy: 2015 summary

1. $\overline{\mathrm{H}}$ atom formation rate $\sim 15 \%$ with $300 \mathrm{k} \overline{\mathrm{p}}$ at 20 eV \& $7 \times 10^{7} \mathrm{e}+\mathrm{s}$
2. $\overline{\mathrm{H}}$ detection scheme perfected
3. σ_{1} hyperfine frequency of ordinary H atoms measured to <10 ppb
4. Currently, $\sim 1 \overline{\mathrm{H}}$ detected / mixing cycle ($\sim 15 \mathrm{~min}$) $\times 10 \overline{\mathrm{H}}_{\mathrm{gs}}$ rate needed for spectroscopy

2. Antiproton-to-electron mass ratio

resonance detection via $\overline{\mathbf{p}}$ annihilation

ASACUSA single photon (final)

ASACUSA single photon (final)

4)
~1.5K
contributed to CODATA2014)

$(36,34) \rightarrow(37,33)$ $(36,33) \rightarrow(35,32)$
$\bar{p}^{3} \mathrm{He}^{+}$

ASACUSA single photon (final)

Experimental improvements in 2012-2015

two-photon resonance $\overline{\mathrm{p}}^{4} \mathrm{He}(36,34) \rightarrow(34,32)$

- New frequency comb improved experimental stability
- Leak in target \rightarrow higher temperature
\rightarrow slight deterioration of resolution (will be fixed in 2016)

Population evolution $\mathrm{T}=1.5 \mathrm{~K} \overline{\mathrm{p}} \mathrm{He}$ at low densities

State lifetimes are unchanged even when the densities are reduced by factor 100-200

$\bar{p}^{4} \mathrm{He}$

$$
\begin{aligned}
& (n, l)=(36,34) \rightarrow(34,32) \\
& (n, l)=(31,30)->(30,29)
\end{aligned}
$$

$\overline{\mathrm{p}}^{3} \mathrm{He}$

$$
(n, I)=(30,29)->(29,28)
$$

Goal: antiproton-to-electron mass ratio $<3 \times 10^{-10}$ ($<1 \times 10^{-10}$ at ELENA)

3. $\overline{\mathrm{p}}$ annihilation σ at 5.3 MeV

Existing data

why \bar{n} behaving like $\overline{\mathrm{p}}$?
puzzling behavior at $\sim 5 \mathrm{MeV}$

$\overline{\mathrm{p}}$ on C at 5.3 MeV , σ precision $<10 \%$

1. use timing to separate signal from background
2. use 2nd ring (Rutherford) to obtain absolute σ

Gann setup 2015 (5.3 MeV beam)

SCINTILLATORS

GEM45

Gann setup 2015 (5.3 MeV beam)

$\overline{\mathrm{p}}$ annihilation time distribution

annihilation on the target clearly separated

annihilation on the target clearly separated

annihilation on the target clearly separated

$\overline{\mathrm{p}}$ annihilation σ at 5.3 MeV, Summary

- Good data for \bar{p}-carbon annihilation at 5.3 MeV collected a benchmark to understand $\sigma_{\text {ann }}(E, A)$ at low energies
- The data are being analyzed we do not plan to use the $\overline{\mathrm{p}}$ beam in 2016.

Conclusions

-In 2015, ASACUSA achieved:
-In 2015, ASACUSA achieved:
-transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
-In 2015, ASACUSA achieved:
-transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$

- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
-In 2015, ASACUSA achieved:
- transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
- started two-photon $\overline{\mathrm{p}} \mathrm{He}$ data taking at $\sim 1.5 \mathrm{~K}$ with a new erbium fiber comb
-In 2015, ASACUSA achieved:
-transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
- started two-photon $\overline{\mathrm{p}} \mathrm{He}$ data taking at $\sim 1.5 \mathrm{~K}$ with a new erbium fiber comb
- collected good data for $\overline{\mathrm{p}}$-carbon annihilation at 5.3 MeV
-In 2015, ASACUSA achieved:
- transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
- started two-photon $\overline{\mathrm{p}} \mathrm{He}$ data taking at $\sim 1.5 \mathrm{~K}$ with a new erbium fiber comb
- collected good data for $\overline{\mathrm{p}}$-carbon annihilation at 5.3 MeV
-In 2016, ASACUSA plans to carry out
-In 2015, ASACUSA achieved:
- transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
- started two-photon $\overline{\mathrm{p}} \mathrm{He}$ data taking at $\sim 1.5 \mathrm{~K}$ with a new erbium fiber comb
- collected good data for $\overline{\mathrm{p}}$-carbon annihilation at 5.3 MeV
-In 2016, ASACUSA plans to carry out
- Higher $\overline{\mathrm{H}}$ rate \rightarrow ground-state hyperfine spectroscopy
-In 2015, ASACUSA achieved:
-transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
- started two-photon $\overline{\mathrm{p}} \mathrm{He}$ data taking at $\sim 1.5 \mathrm{~K}$ with a new erbium fiber comb
- collected good data for $\overline{\mathrm{p}}$-carbon annihilation at 5.3 MeV
-In 2016, ASACUSA plans to carry out
- Higher $\overline{\mathrm{H}}$ rate \rightarrow ground-state hyperfine spectroscopy
- measure hydrogen π_{1} frequency to $<10 \mathrm{ppb}$
-In 2015, ASACUSA achieved:
- transfer of $20 \mathrm{eV} \overline{\mathrm{p}}$ to the cusp trap $\rightarrow \overline{\mathrm{p}}$-to- $\overline{\mathrm{H}}$ conversion $\sim 15 \%$
- hydrogen σ_{1} frequency measured to $<10 \mathrm{ppb}$
- started two-photon $\overline{\mathrm{p}} \mathrm{He}$ data taking at $\sim 1.5 \mathrm{~K}$ with a new erbium fiber comb
- collected good data for $\overline{\mathrm{p}}$-carbon annihilation at 5.3 MeV
-In 2016, ASACUSA plans to carry out
- Higher $\overline{\mathrm{H}}$ rate \rightarrow ground-state hyperfine spectroscopy
- measure hydrogen π_{1} frequency to $<10 \mathrm{ppb}$
- continuation of two-photon laser spectroscopy of $\overline{\mathrm{p}} \mathrm{He}$

