# **GBAR 2016 STATUS REPORT**

#### **Gravitational Behaviour of Antihydrogen at Rest**

An experiment to test the Weak Equivalence Principle with antimatter , using antihydrogen ions  $\overline{H}^{\ +}$ 

$$\overline{p}$$
 + Ps  $\rightarrow \overline{H}$  + e<sup>-</sup>  
 $\overline{H}$  + Ps  $\rightarrow \overline{H}^+$  + e<sup>-</sup>

JOHANNES GUTENBERG aboratoire Kastler Brossel. ETH ZÜRICH P.N.Lebedev Physical Institute of the Russian Academy of Science UNIVERSITAT MAINZ RIKEN FOR SCIENCE 東京フ UPPSALA Swansea University UNIVERSITET Institut Laue-Langevin **Prifysgol Abertawe** Stockholm University NARODOWE CENTRUM Institute for Ш **BADAŃ JADROWYCH** CSNSN SEOUL NATIONAL UNIVERSITY Basic Science Świerk

SPSC - GBAR

IGI



#### **GBAR** synoptic view





## Overview of 2015 progresses

- Linac /Bunker/Cern installation
- Positron source/beam line /interaction chamber
  - Antiproton deceleration
    - Antihydrogen cooling
      - Free fall detector



#### **GBAR** synoptic view





#### **GBAR** Linac

- 9+ MeV/0.2 mA e<sup>-</sup> linac building in progress at NCBJ
- Vertical position (radiation protection)
- Installation: May-June 2016







### Linac bunker

- Linac shielding : many different versions (nearly final, now ~1400 t)
  - Will use LEP magnet yokes (cost & availability)
  - Yoke refurbishing started; installation early 2016; careful control of AD level...



#### Linac bunker



# Positron source/beam line

- A new positron source design will be implemented soon at Saclay facility as a prototype for the Cern installation.
- The GBAR beam line design is completed, tenders are in preparation.



Design of the new Saclay source



CERN current implementation of the positron source and beam line

#### 18/01/2016



#### e<sup>+</sup> moderation, Ps study

- Study with the Saclay positron beam line: qualification of a SiC layer for remoderation.
  - Remoderation efficiency up to  $\sim$  70 % (Usual W remoderation  $\sim$  10 %)
  - Commercialy available layer
  - New perspectives for improving e<sup>+</sup> beam
- Continue study of different e<sup>+</sup>/positronium converters: improve Ps yield, reduce Ps emission energy...





#### 18/01/2016



# **Positron trapping**

- Electron cooling & trapping efficiency should be ~ 75% but not yet achieved
  - Work was going on : calculation of cooling time, alignment of e<sup>+</sup> beam on e<sup>-</sup> plasma, HV instabilities...
    Delayed for exchange of the MRT SC magnet cryocooling head (No more maintenance for old head).
- **Buffer gas** cooling (N<sub>2</sub> or SF<sub>6</sub>) is routinely reaching 25% : GBAR decision to add such a trap as injector to high field trap  $\rightarrow$  guarantee minimal efficiency ~ 25%

#### A new BGT will be constructed and tested at Saclay in 2016

(Parts ordered , delivery well advanced)





#### GBAR synoptic view





# $p/\overline{p}$ decelerator

- GBAR needs  $\overline{p}$  at 1-6 keV: Development of an electrostatic decelerator.
  - $\rightarrow$  Test Bench in CSNSM (Orsay) with protons







→Switch tested OK at 20 kV; now conditioning for 100 kV

 Proton gun to be installed at Saclay, later at CERN, for H/H<sup>-</sup> production study





# $p/\overline{p}$ – Ps interaction

Cross section measurements

Preparation of the interaction chamber for the first measurement at Saclay:

 $p + Ps^* \rightarrow H^* + e^+$ 

The chamber will be used later on at CERN for H-production measurement, before switching to  $\overline{p}$ 

• Positron extraction optics:

Need strong focussing on the Ps converter: magnetic shield, Einzel lenses



Parts delivery in progress, assembly started, measurement 2<sup>nd</sup> half 2016

![](_page_13_Picture_0.jpeg)

#### **Electrostatic deflector**

keV H Fel Hx KeV P

![](_page_13_Picture_3.jpeg)

• Built and presently tested in Orsay.

- To be used for the H production measurement in Saclay, then at Cern

![](_page_14_Picture_0.jpeg)

#### **GBAR** synantic view

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_0.jpeg)

# Antihydrogen cooling

#### Capture Trap (LKB)

- Detailed simulations of sympathetic cooling with laser cooled Be<sup>+</sup> are developed for different elements. Ion energy is crucial. Tests with H<sub>2</sub><sup>+</sup> are planned.
- The capture Paul trap (first stage of cooling) is being assembled, together with the cooling laser (626 nm DBR master diode → 313 nm)

![](_page_15_Figure_5.jpeg)

![](_page_15_Picture_6.jpeg)

#### Integration design of the capture trap

![](_page_16_Picture_0.jpeg)

# Antihydrogen cooling

#### Precision Trap (JGU)

- Study of interference in the light scattered from trapped <sup>40</sup>Ca<sup>+</sup> ion crystals
  - Measure of the interference visibility → ion temperature measurement (to be known at the photo detachment)
  - Paper submitted to PRL (ArXiv.1511.08697)
- Ion trap fabrication
  - Improve trap gold coating technique, to reduce parasitic heating (by factor 1000)
  - New trap chips designed and fabricated → improve heating rate
- Loading scheme for Be<sup>+</sup>
  - Tested with different wavelength, 350 and 260 nm
  - New proton source to test the injection, capture and cooling of light ions in Be<sup>+</sup> crystals.
- Lasers
  - Cooling lasers for Be<sup>+</sup> at 313 nm are ready (one master, one slave, resonance frequency doubler)
  - Set-up second master for line width measurement

![](_page_16_Picture_15.jpeg)

Contrast is temperature dependent

![](_page_17_Picture_0.jpeg)

## Free fall detector

#### • Prototype built and tested in 2015

- 3 microstrip Micromegas chamber detectors (MMD), 8x8 cm<sup>2</sup>, with X-Y readout, built at CERN
- Using the RD51 electronic readout developed at CERN
- Tested with CR and CERN beams
- Design to be finalized for the GBAR detector

![](_page_17_Picture_7.jpeg)

![](_page_17_Figure_8.jpeg)

![](_page_18_Picture_0.jpeg)

### Free fall detector

#### **GBAR** final detector

- Present global design
  - 5 planes of 3MMD, 50x50 cm<sup>2</sup>, with X-Y readout
  - Spatial vertex resolution ~ 1.5 mm
  - CR background being studied
- First 3 modules to be built soon
  - With prototype experience
  - 15 modules ready for summer 2017
- Scintillator coverage to be designed
  - Contribution from Korean groups.

![](_page_18_Picture_12.jpeg)

![](_page_19_Picture_0.jpeg)

#### Overview of 2015

- The GBAR collaboration got new forces
  - 2 Korean groups
  - New technical coordinator
- All subparts of the experiment are now covered

#### GBAR starts installation at CERN in 2016:

- Linac bunker (Jan.-Apr.)
- Linac installation and commissioning (June)
- Installation of the e+ beam line (Sept.)
- ❑ Start installation of the decelerator → aims to be in phase with ELENA commissioning

![](_page_20_Picture_0.jpeg)

#### **THANK YOU**

18/01/2016

Y. Sacquin SPSC - GBAR

![](_page_21_Picture_0.jpeg)

#### GBAR Planning...

| Task                     | Institut; leader     |                  | 2016     |     |     |     |     |     |     |     |     |         |         | 2017 |     |     |     |     |     |     |     |     |     |  |  |
|--------------------------|----------------------|------------------|----------|-----|-----|-----|-----|-----|-----|-----|-----|---------|---------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
|                          | ·                    | Jan              | Feb      | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov Dec | Jan Fet | Mar  | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |  |  |
| e+ production            |                      |                  | <u> </u> |     |     |     |     |     |     |     |     | •       |         |      |     |     |     |     |     |     |     |     | •   |  |  |
| Linac Bunker             | Cern-EN; F. Butin    |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Linac                    | NCBJ; S. Wronka      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| e+ source & beam line    | Saclay; L.Liszkay    |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| e+ trapping              |                      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| e+ Buffer Gas Trap       | Swansea/Saclay; D.v  | ; D.van der Werf |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| e+ accumulator trap      | Saclay; Y. Sacquin   |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Ps                       |                      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Ps target                | Saclay; L.Liszkay    |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Ps excitation            | LKB; F. Nez          |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Pbar deceleration        |                      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| decelerator final        | CSNSM; D. Lunney     |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Hbar+ transport          | CSNSM; D. Lunney     |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Hbar+ cooling            |                      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| capture trap             | LKB; L. Hilico       |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| precision trap + chamber | JGU; F. Schmidt-Kale | er               |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| photodetachment          | LKB; L.Hilico        |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Detector                 |                      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     | -   |     |     |     |     |     |     |  |  |
| Scintillators            | SNU; S.K. Kim        |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Tracker                  | ETHZ; P. Crivelli    |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Slow control & DAQ       |                      |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| Slow Control             | Saclay; P. Lotrus    |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |
| DAQ                      | Saclay; B. Vallage   |                  |          |     |     |     |     |     |     |     |     |         |         |      |     |     |     |     |     |     |     |     |     |  |  |

installation

commissionning