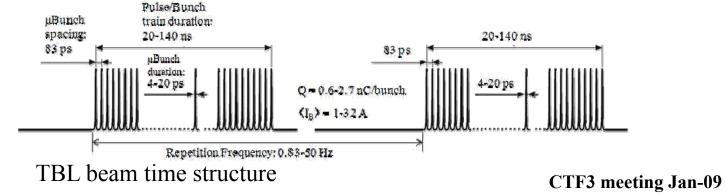


Status on the construction of the BPS series for the TBL of CTF3

A. Faus-Golfe, J.V. Civera, C. Blanch and J.J. García-Garrigós whit the help of the CTF3 Collaboration

CTF3 meeting Jan-09

Contents


BPS prototypes BPS series production Non-vacuum parts production. Vacuum parts production. PCBs manufacturing/validation and BPS' parts assembly. BPS Supports. Low frequency set-up & Characterization Tests. High frequency set-up & Longitudinal Impedance Test Summary & Production Schedule (Back-up solution)

TBL + BPM specifications

TBL Beam Parameters									
Beam current range	1-32 A								
Bunch train duration	20-140 ns								
Injection beam energy	150 MeV								
Microbunch spacing	83 ps(12 GHz)								
Microbunch duration	4-20 ps								
Microbunch charge	0.6-2.7 nC								
Repetition frequency	0.83-50 Hz								
Radiation level	≤1000 Gray/year								
Emittance	$150\mu{ m m}$								
BPM Parameters									
Analog bandwidth	10 kHz-100 MHz								
Beam position range	$\pm 5 \mathrm{mm} (\mathrm{H/V})$								
Beam aperture diameter	24 mm								
Overall mechanical length	126 mm								
Number of BPM's in TBL	16								
Resolution at maximum current	\leq 5 μ m								
Overall precision	\leq 50 μ m								

2 BPS prototypes has been designed, constructed and characterized.

3

BPS: Characterization Table (PCB Ver.1)

BPS1 Sensitivity and Linearity Parameters								
Vertical Sensitivity, S_V	41.09 mm ⁻¹							
Horizontal Sensitivity, S_H	41.43 mm ⁻¹							
Vertical Electric Offset, EOS_V	0.03 mm							
Horizontal Electric Offset, EOS_H	0.15 mm							
Vertical overall precision (accuracy), σ_V	78 µm							
Horizontal overall precision (accuracy), σ_H	170 µm							
BPS1 Characteristic Output Levels								
Sum signal level, Σ	16.5 V							
Difference signals max. levels, $\ \Delta V\ _{max}$, $\ \Delta H\ _{max}$	8.25 V							
Centered beam level, $V_{sec} (x_V = 0, x_H = 0)$	4.125 V							
BPS1 Frequency Response (Bandwidth) Parameters								
Σ low cut-off frequency, $f_{L\Sigma}$	1.76 KHz							
Δ low cut-off frequency, $f_{L\!\Delta}$	282 KHz							
Σ low cut-off frequency calibration, $f_{L\Sigma \text{ [Cal]}}$	1.76 KHz							
Δ low cut-off frequency calibration, $f_{L\Delta}$ [Cal]	180 KHz							
High cut-off frequency, f_{high}	>100 MHz							
High cut-off frequency calibration, $f_{high [Cal]}$	>100 MHz							
BPS1 Pulse-Time Response Parameters								
Σ droop time constant, $\tau_{droop\Sigma}$	90 µs							
Δ droop time constant, $\tau_{droop\Delta}$	564 ns							
Σ droop time constant calibration, $\tau_{droop\Sigma}$ [Cal]	90 µs							
Δ droop time constant calibration, $\tau_{droop\Delta[Cal]}$	884 µs							
Rise time constant calibration, τ_{rise}	< 1.6 ns							
Rise time constant calibration, $\tau_{rise [Cal]}$	< 1.6 ns							

4

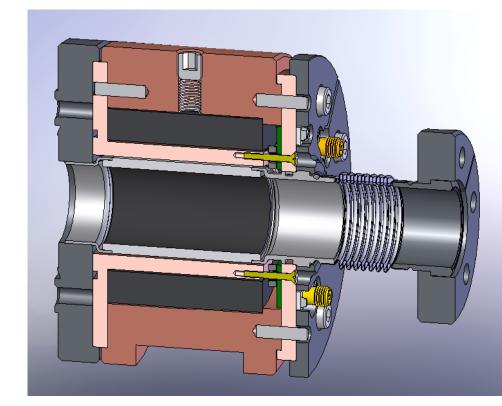
BPS: Characterization Table (PCB Ver. 2)

BPS1 Sensitivity and Linearity Parameters								
Vertical Sensitivity, S_V	44.57 mm ⁻¹							
Horizontal Sensitivity, S_H	50.0 mm ⁻¹							
Vertical Electric Offset, EOS_V	-0.14 mm							
Horizontal Electric Offset, EOS_H	0.27 mm							
Vertical overall precision (accuracy), σ_V	61 µm							
Horizontal overall precision (accuracy), σ_H	431 µm							
BPS1 Characteristic Output Levels								
Sum signal level, Σ	10.5 V							
Difference signals max. levels, $ \Delta V _{max}$, $ \Delta H _{max}$	5.25 V							
Centered beam level, $V_{sec}(x_V = 0, x_H = 0)$	2.625 V							
BPS1 Frequency Response (Bandwidth) Parameters								
Σ low cut-off frequency, $f_{L\Sigma}$	1 KHz							
Δ low cut-off frequency, $f_{L\Delta}$	175 KHz							
Σ low cut-off frequency calibration, $f_{L\Sigma \text{ [Cal]}}$	0.709 KHz							
Δ low cut-off frequency calibration, $f_{L\Delta[Cal]}$	79 KHz							
High cut-off frequency, f_{high}	>100 MHz							
High cut-off frequency calibration, f_{high} [Cal]	>100 MHz							
BPS1 Pulse-Time Response Parameters								
Σ droop time constant, $\tau_{droop\Sigma}$	159 μs							
Δ droop time constant, $\tau_{droop\Delta}$	909 ns							
Σ droop time constant calibration, $\tau_{droop\Sigma}$ [Cal]	224 µs							
Δ droop time constant calibration, $\tau_{droop\Delta[Cal]}$	2 µs							
Rise time constant calibration, τ_{rise}	< 1.6 ns							
Rise time constant calibration, $\tau_{rise [Cal]}$	< 1.6 ns							

BPS prototypes

• A set of two BPS prototypes (BPS1 and BPS2) with the associated electronics were designed and constructed.

•The performed tests in BPS1 yield:

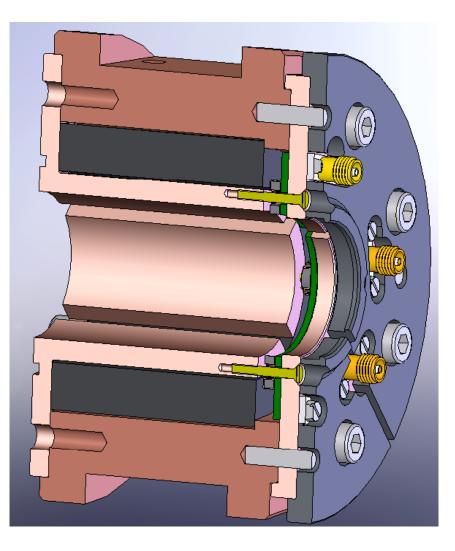

- Good linearity results and reasonably low electrical offsets from the mechanical center.
- Good overall-precision/accuracy in the vertical plane considering the low test current; and, a misalignement in the horizontal plane was detected by accuracy offset and sensitivity shift.
- \circ Low frequency cut-off for Σ/electrodes signals, $f_{L\Sigma}$, and high cut-off frequency, f_{high} , under specifications.
- o Low frequency cut-off for Δ signals, $f_{L\Delta}$, determined to perform the compensation of droop time constant, $\tau_{droopΔ}$, with the external amplifier.
- BPS1 installed in TBL and BPS2 at IFIC

BPS prototypes

- Issues for improvement in the BPS2 prototype:
 - o correct the possible misalignments of the horizontal plane electrodes suggested in the linearity error analysis o check if overall-precision below 50µm (under TBL specs), with enough wire current → New wire testbench at IFIC will allow
 - higher currents, accurate (anti-vibration and micro-movement system) and automatized measurements.
 - $_{\rm O}$ study the different low cut-off frequencies in the calibration, $f_{L\Delta\rm [Cal]},$ and wire excitation cases, $f_{L\Delta}$
- Test Beam of the BPS1 in the TBL→Resolution at maximum current.

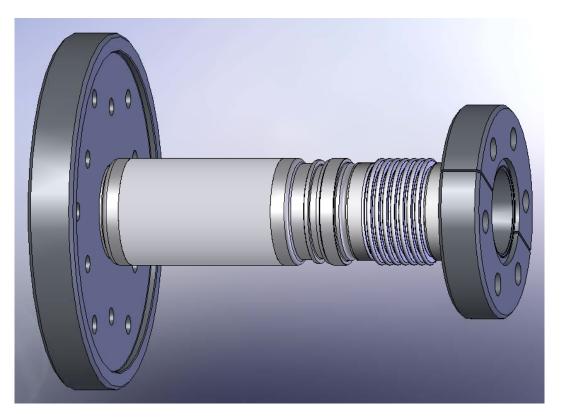
BPS series

Quantity: 15 units (BPS1 +15 + 1 spare for testing)



BSP section view

- Paperwork and tendering process \rightarrow week 37 (Sep 08)
- Main supply contracts signed \rightarrow week 51 (Dec 08)


Non-Vacuum Parts Production

- Copper body, electrode and bridge
- Cu OFE procurement \rightarrow week 5 (2009)
- Manufacturing and metrology \rightarrow week 12
- Flash gold platting \rightarrow week 13
- Cu-Be screws
- Manufacturing and metrology \rightarrow week 12
- Flash gold platting \rightarrow week 13
- Ferrites \rightarrow week 5
- Steel split flange \rightarrow week 12
- RF contacts \rightarrow week 5

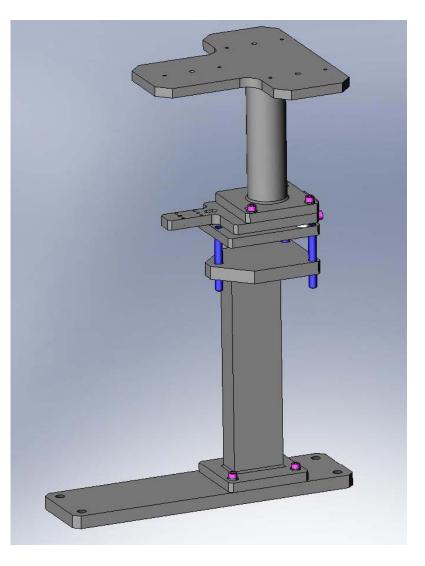
CTF3 meeting Jan-09

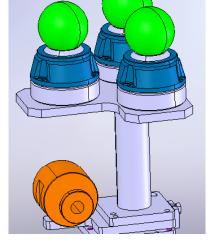
Vacuum Parts Production



- Ceramic with metallic collars brazed & vacuum tests \rightarrow week 12
- Ti sputtering at CERN \rightarrow week 14
- Welding to bellow and flanges (EBW and TIG) and vacuum tests \rightarrow week 16

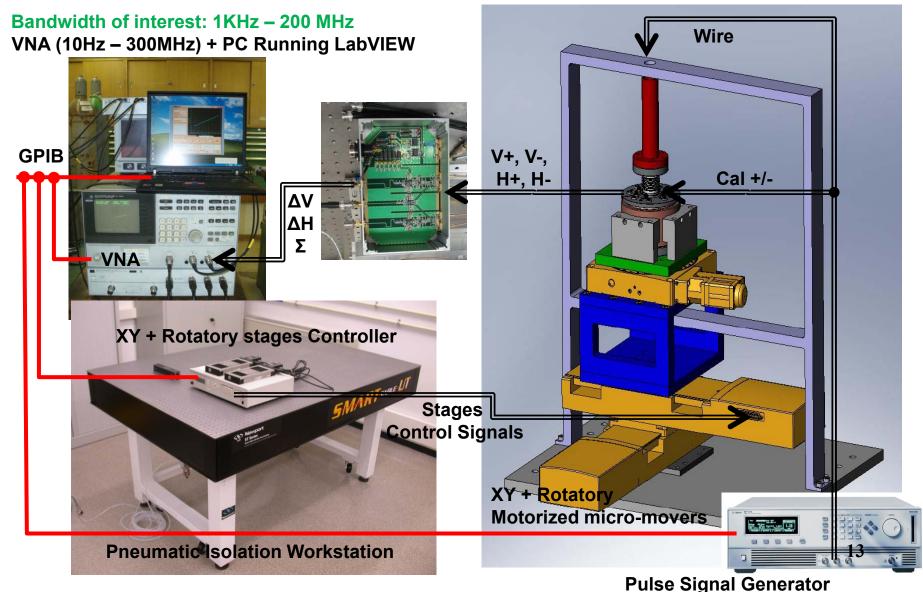
PCBs manufacturing/validation and BPS' parts assembly


- BPS PCBs → week 9
 Manufacturing 40 PCBs and components insertion (Resistors and Transformers)
- PCB gold plate mounting and validation → week 10
- SMA connectors soldering with PCB mounted on golden plate.
- PCB validation Test
- BPS Assembly process → week 18
 Integration and alignment of the non-vacuum and vacuum parts, jointly with PCBs mounted on golden plates.



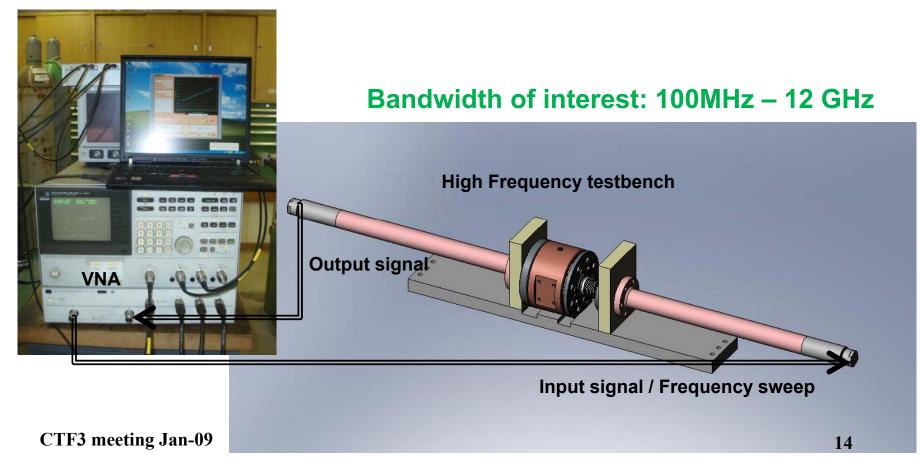
BPS supports

- Materials procurement \rightarrow week 5
- Manufacturing \rightarrow week 10
- Fix alignment spheres and make the metrology at CERN



CTF3 meeting Jan-09

Low frequency set-up and Characterization Tests


- BPS testbench manufacturing and assembly \rightarrow week 10
- BPS series (15 units) characterization tests \rightarrow week 20

High frequency set-up & Longitudinal Impedance Test

- BPS HF testbench manufacturing and assembly \rightarrow week 14
- Longitudinal impedance determination test. Performed to BPS2 prototype \rightarrow week 20

VNA (100MHz – 20GHz) + PC Running LabVIEW

Summary and Production Schedule

- Production of 15 BPS's already started.
- LF & HF Test Set-ups.
- Supports.

Week # (2009)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Non-vacuum parts																				
Ceramics with collars																				
Ti sputtering (proposal)																				
Electronic PCB's																				
BPS welding & integration																				
BPS supports																				
Metrology of supports at CERN (proposal)																				
Low frequency setup																				
High frequency setup																				
BPS tests																				

(BPS2 + 2 units) could be delivered at week 12 using spares parts from prototypes production