

Radiation Monitoring at CTF3

CTF3 Buildings – weak spots Radiation Monitoring system Monitoring results – First Lessons

Idelette Floret, <u>Thomas Otto</u>, Daniel Perrin, Markus Widorski DG-SC Radiation Protection Group Strategy for Radiation Protection

- CTF3 built in existing surface structures, built for another electron accelerator (LEP pre-injector)
- Wall thickness can hardly be modified
- "weak spots" where bulk shielding is broken or thin
- Monitor ambient dose rate levels and raise radiation alarm if limits exceeded
- Installation of the state-of-the-art RAMSES monitoring system (1st facility after CNGS & LHC)

CTF3- surface buildings

- Roof shielding 200 cm concrete, accessible
- Roof shielding 80 cm concrete, inaccessible
- "weak spot" in bulk shielding

Ambient dose rate limits

- Area accessible to public:
 - 0.5 μSv/h
 - 2.5 µSv/h for infrequently occupied areas (e.g. Parking)
- For example
 - Public spaces around CTF3 surface building

- Supervised Radiation Area:
 - 3 μSv/h at workplaces
 - 15 µSv/h in passageways
 - Obligation to wear a personal dosimeter
- For example
 - Klystron galleries

What is monitored ?

- During operation:
 - Monitor ambient dose rate H*(10) from stray radiation at "weak spots" (representative for the whole of the facility)
- During Tech. Stop / Shutdown:
 - Monitor ambient dose rate H*(10) from activated material to determine suitable working conditions for interventions

High-sensitivity radiation monitor

- For stray radiation
- Centronics pressurised ionisation chamber (2 MPa)
- Part of RAMSES system

Stray Radiation Monitoring (1)

CERN

Stray Radiation Monitoring (2)

CERN

Observation of stray radiation

Stray Radiation

- The assumptions that the access mazes represent weak spots is confirmed
- Ambient dose rate limit for public area at emergency exits exceeded:
 - Observation of values $\dot{H}^*(10) \cong 15 \,\mu \text{Sv} \,\text{h}^{-1}$
- Consequences:
 - Temporary fencing of emergency access, intensity limitation
 - Improvement of the mazes

Extension of the access labyrinth (originally for tail clipper)

2100.		L1	L 2	D 1	D 2	
2000.	Alternative 1	200 cm	240 cm	80	40	
1960.	Alternative 2	280 cm	160 cm	cm	cm	

FR

SC/RP

Beam loss at 2 m from exit for which ambient dose rate in public space will exceed 2.5 $\mu Sv~h^{\text{-1}}$:

1 % 55 %

(CTF-3 nominal electron beam with 3.5 A, 1.4 μ s, 5 Hz \approx 3.7 kW @ 150 MeV)

?

µSv/h

µSv/h

s

µSv/h

µSv/h

í Svíh

s

0,6, A or cs

Induced Radiation Monitoring

13

MSDA

Observation of induced radiation

14

Residual dose rates

- Residual dose rates varies from spot to spot over orders of magnitude, depending on previous accelerator operation
- While Induced Activity Monitors give a first indication, radiation survey before access remains mandatory
- During maintenance periods, authorised personnel can work in CTF3 without permanent supervision by RP personnel
- All material dismantled from the accelerator must be stored as radioactive material/waste

Summary

- CTF3 operates an electron accelerator with relatively high power (*P* < 7.7 kW) in surface buildings, designed for a different purpose
- In order to protect persons in accessible areas, beam loss monitoring is essential
- Compared to CERN's proton accelerators, residual dose rates low, but not negligible.
- Activation must be further studied for waste storage/elimination purposes