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Outlines:

» Machine and detector upgrade plans
» Layout and challenges

* Module integration

» Silicon sensors & FE readout

* Powering schemes

» Readout architecture overview

» Service constrains

e Summary



Machine Scenario

SLHC — Phase Il 6000
Parameters
Scenario 1 Scenario 2 5000 »
Bunch spacing [ns] 50 25
£ 4000
Proton/bunch Nb[101] 4.9 1.7 z
B* at IP1&5 [m] 0.25 0.08 § 3000 ol famp
— : , shutdowns —-Nophase
Longitudinal profile Flat Gaussian £ 2000 -
Rms bunch length c,[cm] 11.8 7.55
1000
Peak luminosity [1034 cm2s1] 10.7 15.5 : ;
Time shifted by 1 year!
Effective luminosity (5h) [1034 cm-2s1] 35 3.6 0
- ,"'\ ,"'\ SS9 S35 388933389333
Peak events per crossing 403 294 BELERLRGHEIUGEBSERERE

Expected shutdowns:
- 6 to 8 months in 2012
- 18 months in 2016 l

B-Layer replacement

Detector Upgrade
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Detector Upgrade Plan

e Current ID is designed to survive ~600fb-tintegrated luminosity expected for
2016
* New ID is therefore planned for installation/operation in 2018 with a higher
yearly integrated luminosity of 600fb-!
 Many challenges and critical issues: Under investigation for most of them
» Schedule:

- End of 2009: Letter Of Intend

- 2010: Technical Proposal

- 2011: Costing and MOU by April and TDR by December

-2012: PRRs

- 2017: Installation at the end of the year
» Upgrade organization: Executive bodies, Steering Group, Technical
Coordination, Project Office and Working groups

The Upgrade community has to keep in mind the detector challenges at SLHC...
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Challenges

Luminosity ‘
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Detector Upgrade Issues

Topics under investigation for the tracker upgrade:

» New ID layout: Only silicon pixel and strip detectors <> Simulations
» Trigger: Need to workout on a TDAQ/Detector interface specification
» New detector technology: n-in-p planar for strips
» New ASICs technologies: Deep submicron 250 nm ->130nm or 90 nm
» Cooling with more headroom: Silicon temperature below -20°C
» New powering scheme: Serial powering or DC-DC for parallel powering
> Faster readout: FE asics (160/320 Mbps) and optical link (5Gb/s)
SCT 1.3 kch/link - Upgrade 123 kch/link

» Module integration will be grouped on a stave or a super-module structure
—> performances
» DCS is proposed to be partially integrated into the readout architecture
» Engineering:

- Assemble and commission the complete ID in a surface building

- Service reuse of cables between counting room and detector
» Installation: Limited access time inside the cavern
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Strip Detector Today
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ID Upgrade Layout

Evolution of Strawman Lavout since

AR LIRS AL

Fixed length barrel Stawman08

2 layers - long strips (~10 cm x 80 pm)
3 layers - short strips (~2,5/5 cm x 80 um)

4 layers - pixels (0,2/0,4 mm

2006 =2

V15—Fixed Length (FProposed)

Including disks this leads to:

Pixels: 5 m2, ~300,000,000 channels

Short strips: 60 m2, ~30,000,000 channels
Long strips: 100 m2, ~15,000,000 channels
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Simulation 63, 64 should drive the layout:

- Reasonably low occupancy

- Good tracking efficiency, low fake rate ™~ ¢ .onins Layout TF led by L. Rossi

—

]
G R A B iy S i i T 3 A i L 3 5 S
60 J\

80 |

—

240

_—

ACESO09, D. Ferréere




Radiation Background in ID at SLHC

Simulation using FLUKA2006

o
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Inner tracker fluence predictions 1T MeV neutron ECZ]UiVO lent fluence
at the SLHC, using FLUKA2006.

— Integroted luminosity of 3000 fb™

— ov18 geometry {(5cm moderator)

R(cm)

— No saofety factors

1 Mev neutron equivalent fluence

T
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10"8
7
Radius from beamline (cm)

|| Issues

> Thermal management and shot DL i 1014
noise. Silicon looks to need to be at

less than -20°C (Thermal runaway). ’ T e e 553(:;;)00

Si power: 1W @ -20°C 1 MeV equivalent neutron fluences assuming an
4W @ -10°C integrated luminosity of 3000fb* and 5cm of
10W @ 0°¢C moderator lining the calorimeters (reduces

fluences by ~25%)
- With safety factor of 2 Si-strip has to withstand
9.10%n,,/cm?

- High levels of activation will
require careful consideration for
access and maintenance.




Collected Charge (ke)

Collected Charge (ke')
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Silicon Sensors
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Hamamatsu ATLASO7
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Module Integration
C00|ing In Module #1 Module #2 Module #12

TTC, Data &
DCS fibers Opto|:|
sc []

DCS |:|

DCS env. IN interlock

Cooling Out =

ﬂ SMC
PS cable [ Hybrid

Key features:
* Integrates all the functionalities and the requirements like: Sensor, FE, service
bus, powering, DCS, cooling, mechanical precision and stability, controller
cards, optical readout link, connectors and fittings...
» Low material budget with design and technology optimization
 Precision: built-in accuracy and mechanical stability
* Thermal management is critical to prevent runaway on the silicon
- cooling, design, material and performance to be optimized
« Manufacturability, yield and cost
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Module Integration - Stave

Short Strip Double-sided Stave - Baseline

T

Carbon honeycomb facing
or foam Readout IC’'s

Power, DCS, HV

From A. Greenall
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Double-sided Module - Backup

M1.6 Al-allay

Screws

Connecto

T
and SMC

Upper module:
Assembly jig
Lower module:
Assembly jig
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Endcap Petals

Serial Powering Lines

Endcap strip:

5 discs on each side

» 32 petals/disc
- 4 different petals (325mm<R<950mm)

* 6 different detector types mounted on petals S —
- Max 18 sensors/petal contiol |
=> Min. 12 sensors/ petal

8 hybrid types

—> Issues: Layout, modularity, powering...

C. Lacasta IFIC
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Readout Electronics - IC

CMOS [130nm or 90nm] is the commercial technology choice for the
Upgrade:

- Known for the radiation hardness (Transistors with GAA)

- Good for large volume production

- Good for low power consumption

Issues:
» Technology choice for a production in > 3 years: 130nm, 90nm?
* Number of channels per FEIC is left opened so far: More than 128 may have
some advantages
e Power consumption (Strips):

- 250nm (ABCN) - Measured 3.6 mW/ch @ 40MHz

- 130nm - Max target 1 mW/ch @ 160MHz (expected 0.5-0.6 mW/ch)
 Single Event Upset (SEU):

130 nm technology seems to be 10 times more sensitive than 250 nm
* Need to consider new readout protocol
* Design - prototype and tests - manufacturability on a fixed timescale
» Design and tools of 130nm or 90nm are more complex
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128

Channels
Front-End opt.
for Short Strips
0.7mW/channel
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Serial regulator to
provide analogue
from a unique digital+
analogue power
source

FE - ABCN

Digital part : reuse of
existing SCT protocaols,
SEU protections,
80Mbits/sec output rate,
power control ,
2mW/channel @2.5V

ABCN 250nm is an
intermediate version of
the FE chip for modules
prototypes developments

F. Anghinolfi

Shunt regulators (2
options) to exercise 2

different serial powering

systems
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ABCN In 250nm

I VR e L

ABCN program:

» Test and validate the current chips in
250nm technology

» Use those chips for prototypes

» Work on the final choice technology :
Gradually increased the # chips

PE'd UNIVERSITY OF .

&7 LIVERPOOL :

Subset of aresult of a 20 chip
ABCN Liverpool hybrid

EEEEEEEEEN

Good progress so far in testing:

- Digital and analog performance as
expected

- No malfunctioning found

- Yield seems good

-Functionality and performances to be
tested @80MHz

- Wafer screening under investigation | — ' —

LI R
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Noise as expected ~380e
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Silicon with ABCN-250nm

XS UNIVERSITY OF
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Divided first ABCN into three e _
sections connected to 2.5 cm, 5 — " RS
cm, 7.5 cm silicon strips '
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Module Controller (MCC)

From M. Newcomer
Features:
 Single Point interface between hybrid FEIC’s and Stave
distribution of TTC and ROD read out signals.
* DCS Monitoring

 Power Management ??
» Short and long strip readout clock: 160 and 80 MHz respectively

(SC > MCC L1,BC,CMD Bussed to all MCC

For the Serial Power (SP) option the MCC needs AC coupled receivers.
Stave Bus |
SC € MCC Hybrid Data Direct Link / MCC

. For the SP option the Stave Controller needs AC coupled receivers.

([ MCC = FEIC L1,BC,DC,CMD Bussed to FEIC's

Hybrid Bus { MCC €« FEIC FEIC Data
@128ch/FEIC Multiple Loop Bi-directional Serial.
\ @512ch/FEIC Dedicated Lines to MCC ??

ACESO09, D. Ferréere




Powering

ID Upgrade has a lot of more channels to power than current ID

2 options are considered: - Serial powering
- DC-DC conversion

ABC-Next 250 nm: Vcc=2.2V, lcc =0.036 A
E Vdd =25V, Idd =0.12 A
0.38W/FE = 30.4W/module =2 365W/stave

ABC-Next 130 nm : 1mW/ch expected
0.13W/FE -2 10.2W/module = 123W/stave

8 |
- IP = ~2 order of magnitude higher of

i i
line width than SP or DC-DC

Issues:

« DC-DC: EMI (switching noise); radiation-hardness; high gain/efficiency
» Serial Powering: System aspect, Optimize protection/by-pass circuitry,
Evaluate custom circuitry and identify best architecture

» System: Work out cable budget; LV & HV distribution, schedule...

ACESO09, D. Ferréere




Serial Powering
4V x 30 hybrids=120V (0.8A)

Strip Stave from LBNL

i T T N 1 it e e e B

Tested so far: ~
1) Pixel stave with FE-I3 (old, published) Electrical performance is
2) 6 SCT modules in series with ABCD - S ICINlEURESSRIITITRCI{e
3) 6 module stave with ABCD AC- LVDS coupling works
4) 30 module stave test vehicle and stave

On work:
» Several options are considered: Shunt integrated in the FE, Shunt} Tested with

outside and transistor in the FE, Shunt and transistor outside FE ABCN and SPi
» Overvoltage protection and enable scheme to be worked-out and tested

ACESO09, D. Ferréere



DC-DC Powering

Key features: Efficiency, modularity, flexibility
Work development common at CERN for ATLAS and CMS

Voltage for SMC and optoelectronics generated locally by a converter stage 1 From F. Faccio

___________

Only 1 power line/stave 10-1 V\ """""" 2 Converter stage2 on-chip!

o Distribution with 2 conversion stages
« Stage 1: i
- 2 converters: 2.5V analog and 1.8V digital i
- Higher efficiency if more hybrid powered i
- Integrated into a modular circuit board i

« Stage 2:
- Directly integrated into the FE asics
- Switched capacitor converter with fixed

conversion ratio = 2 Hybrid 2 5V bus
controller 1.8V bus
- 2 converters one for analog and one for 10-12V -

digital

ACESO09, D. Ferréere




Readout Architecture

10 for slow control
(power, temp...)

FE Chip

A

x10-20 /MC TTC _

Link
Qegata N LinKks

f’/'c\
a/
4,
Os

10 for slow control
FEIC (power, temp...)

GBT could be a good candidate

Difference with current SCT architecture:

- MC and SC stages

- FE Data at 160-320 instead of 40 Mbps

Module ‘ec
Controller| . TTC f”/b,,,
5 el .. 10 for slow control
MC ata S  (power, temp...)
x24 /SC MLk > o
Inks Dr.
Stave Yier
Controller| < TTC q///};,(_
—> Data
SC
x2 /stave

- Data to off-detector will transit via high speed links

Short-strip stave - bandwidth 3.84 Gbps Max needed for strip project
- Top and bottom side readout are decoupled
- DCS diagnostics data possibly integrated into the readout chain
- FE redundancy scheme is differently implemented (No bypass)

- Readout protocol has to be different (avoid token, data coding,...)

ACESO09, D. Ferréere
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Optical Transmission

Work focus on high speed data link @ 5Gbps to minimize the number of fibers

The data transmission will be done for half stave (Strip)

Data out 1 i

Data out 2\ :

Data out 3 l GBT Op.tO
/ ! Devices

Data out n i

160-320 Mbps i 5 Gbps

Challenges and investigations:

» Opto-devices not enough radiation hard for the pixel region BUT OK for strips
» Radiation harness of all the components especially at low temperature -20°C
* Bit Error Rate (BER) versus SEU - Error correction mandatory at sSLHC

» Wavelength study: 850nm versus 1310 nm (more radiation hard)

- 1310 SM VCSELSs becoming available now which are being investigated
 Versatile link working group well structure (common to ATLAS and CMS)

Sl
XL
S

.q

GENQ’
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Possible Requirements

* Redundancy scheme to be considered at all the stages of the readout chain from
FEIC to SC and Opto-electronics

» Readout protocol and the data format has to cope with high speed readout, the
easiness and the occupancy

» SEU robustness is essential 2> Replica logic has to be integrated where it is
necessary

* Need at maximum an effective data rate of 3.84 Gbps at the optical interface
(short-strip stave)

» An error correction scheme should be necessary due to BER in the optical
interfaces

| Phllippe S8cheme 258 strip chip Scale=1.T | hist_2

Dead time versus buffer depth

- Trigger Rate <L1> =100 kHz

- Assume 20 MHz BC = <pile up> = 400

- 256 channels/FEIC

- Readout through 1 MCC

- Look at short strip detector only (worst case)

5 10 185 20 25 30 35 40
ACESO09, D. Ferréere Numbser Bufters
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DCS Architecture

Mainly 2 options proposed so far:
- Option 1: - All the Hybrid and FE chip DCS info are readout via Fiber
- One hybrid temp per stave is independently readout

- Option 2: Same as option 1 except that all the hybrid temperatures are readout

independently via an independent DCS chip

NB: In all options interlock based on NTC cooling loop, Environmental, SMC temp

are separated from data readout

LAN

CAMN Bus

T T YT

Glaobal Interlock

BBk

L

Channel Interlock

ACESQ09, C

RH

SP{bus or
LVD5 lines
dais r{{mfn

FS Type 2 = Twvpe 4 cahles

L]
Hybrid Temp

; [
Hybrid Power

DCSType 2 | ™ e e e -
cables i
PS Crate . :
SMC Hybrid ]
.. & & :
Environmental Env. i
7 Cooling (Super-Module) Structure
Temp NTC




DCS versus Operation

DCS Cooling Survey XX

Pre-operation SMC ramp & Opto com - Operation LRCRC

BN EEEE BN Detector Cold HEEEN #EEEE 0 W

Cooling Interlock Active, Env. data accessiblé, o oo
Low data volume
Up to 5x10* data/day/stave -
I |
09’60 | Module Interlock Active, Module temp, local PS accessible eee
I_'_'_'_'_'_'_'_'_'_‘_'_'_'_':.g\___'_'_'_'_'é. : - :
- W R Medium data volume
| o« 5 Qo : @ 0.1Hz
2 & Up to 4.3x10° data/day/stave
""" T &
(“0 O\ﬂ ‘
«° 06‘0?\ FE DCS, Hybrid power accessible eee
1 | =
¢ On request > High data volume @ 0.1Hz
Max 9x106 data/day/stave

Time
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Services

It is where there is a lot of constrains!
CUIIDLI allly.

- Low mass inside the ID volume required

- Connection to the ID flanges should be fast and reliable
(Limited access due to radioactivity level)

- Have to deal with the existing cables from counting
rooms to PP2

- It has been excluded to reuse all the services at the
various PP1 position

- For cooling pipes the cooling choice will strongly define
what to do and the possible recycling

Electrical service available:

« SCT.  -4088 cables (LV, HV)
- 144 fiber ribbons

* Pixel:  -1808 cables (LV, HV)
- 84 fiber ribbons

* TRT: - 40128 cables (LV, HV,

signal)

NB: Fibers have to be reinstalled to
suit with bandwidth of ~5Gbps




Conclusions

« 3 ID Strawman layout versions have been investigated but a new baseline is

expected in fall and to be presented at the LOI (early in 2010)

* Need also to deal with the possibility of a change in the layout with a track

trigger - Implication on the readout architecture?

» The strip community are investigating the short (2.5cm) and the long strips

(10 cm) for barrel and EC with stave or petal concept

* A strip readout Task Force has been initiated and is led by P. Farthouat.

Specifications for the complete readout chain has to come soon to progress
—> Interim document “Architecture of the Readout Electronics”

» So far ABCN in 250nm is working well and the noise performance is as

expected

» Many interleave fields: powering, readout, opto-electronics, DCS, services

 Prototyping is vital and all the future new ICs have to be tested on a real size

stave/petal object

» Schedule is tight for a TDR in 2011

- Need soon to freeze the FE technology, the readout protocol, the powering
scheme and the DCS options.

ACESO09, D. Ferréere
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Backup Slides

2 X 10 5 times
iﬁgnnds SHORT STRIPS 2o
channels

L0 L0

Oog B0 |: |:

L0 0 I: I:

00 00

00 Q0 |: I:

00 00

00 00 I: I:

L0 0

L0 0 I: I:

0o |00 |

O O O O

Module arrangement, Short strips, Module arrangement, Short strips,
128 channels ABCN 512 channels ABCN
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128 ch FEIC layout

Variations on
channel number

Area for pads, RAMFF cells RAMSR cells
power circuits
etc
FE pads - Main pipeline 1%;3 Main pipeline
2 rows —)8(—
500um x 0.8cm 1§§
Main pipeline )1(53 )é iig
[ 8
FE channels 7B
128 0.8cm RO Buffer iig
1mm x 0.8cm e RO Buffer
3.83mm \\\5
Digital Pipeline/RAM REAL
area 50K area
630um x 4mm cells 50K From 130 nm Artisan
cells Liorary (2 optiorns)
Chip size estimate for 50K cells as ABCN
130nm IBM CMOS tech. amm design, at average
128 channels density i
(150K c&RShiG
630um :
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512 ch FEIC layout
512 channels

chip option, ABCN : NEXT STEPS
Short strips RAMFF cells RAMSR cells
One digital
] block,
FE pads Main pipeline iig Main pipeline E;%Cgﬁztzflels
4 rows g
700um x 1.8cm 128
a Main pipeline ifg )(;25 iig
| 8
FE channels
512 RO Buffer| 128
1mm x 1.8cm -)5(12 RQ Buffer
Max digital
area 50K
630um x 1.6cm cells 50K
| cells
Digital
arrangement
in 4 identical
blocks, each 4mm
one for 128 - 1.8cm
channels 630um

ACESO09, D. Ferréres'83mm




Interim Report

_ Architecture of the Beadout Electronics for the
)i 1 ATLAS ATLAS upgraded silicon strips detector
"] project Interim report of the Strip Readout Working Group
ATLAS Fropicr Dicarmeer No: Tamdate Docusenl Ma. vt i |- e - 2008 Feage: | ol 35
ATL-P-EN-0xex Modgfiad: 13-Fae-00 Bav. Moo Lib

Architecture of the Readout Electronics for the ATLAS upgraded silicon
strips detector
Interim report of the Strip Readout Working Group
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Upgrade Bunch Pattern

-« - - « nominal
+—>
25 ns
ultimate
‘<_>‘ ‘ ‘ & 25-ns Upgrade
25 ns (ES, FCC, & LE)
< = 50-ns upgrade (LPA),
— no collisions in LHCDb!
50 ns
- - a4 - 50-ns upgrade
B ——— _ _
<+—> Wlth 2_5 ns
50 ns 5 collisions
ONS  inLHCh
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luminosity [10™* cm™s™]
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AC

Thermal Runaway

Tmax (FE)= -19.4°C

Cooling @ -30°C with CO,

Tmax (Si)=-20.7°C

US Stave Runaway

O 5
%- —p =[] SYWatt chip convec -15deg = & =03Watt chip convec -0 deg == 34Watt chip convec off
5 0.15Watt chip convec -15deg = B =0.15%Watt chip convec -0 deg s————015%att chip convec off
)
e A
E 0 re —
E LHC L‘ =
S
= | A N

N
v
:\
_’.-‘

| —
..... 1
2 o \\ e
: Uncontrolled T, has a significant impact
i on Si-temperature and on the runaway! Q@ Si (T=0°C) [mWimm2]
—SD T T T T T T T Iy
0.0a 1.00 2.00 3.00 .00 5.00 5.00 7.00 g.00




Readout Scheme - Redundancy

Normal readout — 2 rows of 10 chips > MC 1 dead chip — 2 asymmetrical rows - MC
i 160 Mbits/
] ) > | ») ) 160 Mbits/s Pl € X L Y its/s
: [
i
! 10 FEICs 10 FEICs
E MC MC
1 A
Ffamrmal data flow: each 16@Mbits/s link |1 One failing FEIC: one of the 160 -Mbits/s link 1
D reads out 10 FEICs ! . Is reading -out more than 10 FEICs '
'at » alt | [N
Wnused 10 FEICs I
: 320 AR E Bletien a
; 160 1
> B P ¥ P | N
60 Mbits/s V¥ —p —> - - n _
To 160 Mbits/s ¢
To
SMC SMC

Other stages of the readout chain:

* MC: 2 chips are installed per hybrid and 100% fail safe scheme can be
adopted

 SMC: Similar scheme as MC could be specified

» Opto: To be defined — One option could be to link the TTC and the data with
the SMC of the other side of the stave - Bandwidth?

- .-
pu
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Readout Protocol

logic lvds drv ,ng@:@’\ loqgi
—D Q p) (\O)) —|D Q —
Token mechanism t Uine t N
currently used with < Setup out Liry Lo in >h°(':K
ABCD and ABCN
160MHz chi PA chi pB 160MHz
NB: At 160Mbps: 2.8ns remains to t, and t;,... Not enough for any logic @ 250nm!
_ command :
Option 2 L1 L1 L1 L1
led_out data data data
FIFO FIFO FIFO FIFO
Word enable via
Xon/Xoff line(s) MCC | xoy S Xon/ S Xon/ E
- No synchro.

NB: Data are pushed from left to right into the FIFO. Xoff is up when the FIFO is full!

- No synchro
- Robust if dead FEI

Star configuration — Data concatenation into MCC
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Readout Protocol — Data Packets

)
=
—-
o
o
@
Q
@
*

iIned: How to encode the data and bandwidth expectation?

{Header{+ L1 IDK{+ BC _IDK{MC _IDH{+ Chip_IDH + CH_ID + Data}{+ Trailer}
. {+ Reg_ID +Data} ... < DCS
. {+ ErrorCode} ...
Data packet options for all chips:

gap
Fixe(;jSiZidt Header w1 w2 ws RSB Header w1 w2 RIS
wor acke
P 1 chip Next chip
gap
;/a:iab'eiizted Header Data Trailer i Header Data Trailer
ala packe
P 1 chip Next chip
Fixed sized Header Data Header Data Header Data
data packet

| 1 chip Next chip

»  Works better with 256 ch/FEIC versus occupancy
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SEU & BER
Absolute requirement is to prevent the readout chain against off-state due to SEU
- Smooth run & operation

» 130 nm technology has higher SEU cross-section due to smaller geometry
and smaller digital voltage

* Need to implement replica logic (triple vote logic) to increase SEU tolerances
* Replica logics consume 3 times more space and therefore has to be used
where it is absolutely necessary

» P-I-N diodes and BER versus SEU has been studied by Versatile link teams
Overview of devices tested at 90 degrees, 2.5 Gb/s

Measurements obtained 10° .

with a test system at PSI\ o BER = 10% |
s ¥ ) Work of Versatile Link grpup

D|
-]

E
=
=
2 107
g _10° ]
o : BER =10
@ 0.
S ., *:90
O 3 ot 2 3
5 10 ; ’\:ib ;
= i ﬁﬁ' ]
] —#—Man. 2, Mod. 1 SR
= —%—N&n. 2, Mod. 1 $
o p° L —{— Man. 4, Mod. 1 J
=+ Man. 5, Mod. 1 10 ]
L |-o—-menEMoar| BER =10
—&— Man. B, Mod. 2
I — ¥ Nan. B, Mod. 3
1[}'1[' 1 1 1 I 1 1 1
-18 -16 -14 -12 -10 -8 -6 4 -2

OMA (dBm)



Cooling

e
One of the keys in the operational success!

|Issues:

- Define the fluid coolant: CO, versus C;Fg

- Service reuse and segmentation

- Manifolding and impact on the system

- Module design is directly dependent of the cooling choice

- Requirements and specifications to be well defined and written-up

Known:
« C3F8: We learnt a lot and still may be a lot to learn in long term operation!
- Already a plant running BUT would it still be satisfactory in 10 years
- Need to improve the pressure drop in the exhaust to allow a
temperature close to -30°C.
* CO2: LHCb, AMS have it! Looks good but not easily scalable to ID Upgrade
but fine for IBL!
- Less material for pipes, fittings and manifolds inside the ID volume
- More safety margin for Si temperature.
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Integration

Baseline:
- Integration of a 7 m long ID on the surface
- Room for insertable/removable b-layer

Yz

Issues:

 Layout not defined yet = Engineering
IS based on 1 layout (not optimized)
 Analysis (FEM) and dimensioning of
main structural elements

» Critical points under investigation:

- Service space inside the ID volume critical between EC and Barrel strips and
in the flange region

- End of barrel strip where SMC and dense service region is expected

- Cooling distribution and manifolds

- Thermal management OC and Poly-moderator
- Pixel optoboards position

- PPF1 connection area and arrangement
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Radiation Level

Dose rates after 10 years of
LAr Calorimeter running and 30 days of cooling.

Issue:
Requirements to reuse much of ATLAS

and the levels of activation anticipated:
] —> greatly complicate installation

- Minimize the tasks

Pixels SCT TRT LAr VI
58 uSv/h: 37 8 4 8 1
Neut. act.: 29% 42% 29% 23% 0%
Services: 78% 86% 64%

Pixels SCT TRT LAr VI
3uSv/h: 51 8 3 g8 3
Neut. act.:18% 41% 30% 25% 0%
Services: 59% 84% 63%

1XelS __ Pixels SCT TRT LAr VI
1 VI beampipe 144uSv/h: | 118 9 3 3 6

Neut. act.: 4%  41% 30% 25% 0%
noy,

7/
i Services: 9%  82% 62%
.,_‘
‘ -1 week for catA (<6mSvly)

- 2.5 weeks for catB (<15mSvly)



