

System implementation of a power distribution scheme based on DC-DC converters

F.Faccio, G.Blanchot, S.Michelis, C.Fuentes, B.Allongue, S.Orlandi CERN – PH-ESE

> S.Buso, G.Spiazzi PEL, DEI, University of Padova (I)

- Foreword and objectives.
- > Distribution Scheme.
 - Proposed scheme.
 - On-module distribution.
 - Example of power-up sequence.
 - On-stave distribution.
 - Protection features.
- Integration issues.
- Noise issues.
- > Conclusion.

Foreword

- > Requirements:
 - To deliver increased amount of power.
 - To contain or even reduce thermal losses.
 - To minimize the material needed to bring the power in.
 - Cables
 - Boards
 - To be compatible with the environment
 - Radiation,
 - Magnetic field
 - Space
- All images shown here are examples for ATLAS SS staves

An Optimal DC/DC Scheme

- The scheme proposed here results from the optimization of several parameters in different converter topologies:
 - Conversion ratios less than 6 per stage.
 - ➢ Efficiency above 80% per stage.
 - Switch frequency that minimizes the size of components.
 - Granularity:
 - > That enables scalable control system.
 - > That provides individual control to each front-end ASIC.
 - Reduction of losses in cables and copper traces.
- This resulted in a two stage scheme based on a buck converter per module, followed by individual switch capacitors converters in each front-end ASIC.

ACES workshop 2009

- Foreword and objectives.
- > Distribution Scheme.
 - Proposed scheme.
 - On-module distribution.
 - Example of power-up sequence.
 - On-stave distribution.
 - Protection features.
- Integration issues.
- Noise issues.
- > Conclusion.

Proposed distribution scheme (2)

Summary of features

- Modular approach, very flexible building blocks can be custom assembled following system requirements
- Very efficient to provide only required power to every system component, at appropriate voltage
- Conventional grounding scheme
- Conventional detector powering
- We can build on the experience accumulated for LHC experiments (and others)

On-module distribution

Granularity and control

Example power-up sequence

Protection features

- Conversion stage 1 components:
 - ASIC
 - Coreless inductor
 - SMD components

ASIC embeds soft-start and protections This is a routine in commercial components

- Over-current (cycle by cycle current control)
- Over-voltage
- Over-temperature (thermal shutdown protection)
- In case a problem is detected, the output is disabled and a flag is raised (power-good pin not asserted)

Distribution in end-caps

The power distribution system described can be used in exactly the same way in the petal geometry of the end-caps (or by the way in any other geometry)

- Foreword and objectives.
- Distribution Scheme.
 - Proposed scheme.
 - On-module distribution.
 - Example of power-up sequence.
 - On-stave distribution.
 - Protection features.
- Integration issues.
- Noise issues.
- > Conclusion.

Towards integration of stage 1

- Compact design \geq
 - Reducing the size of the full converter
 - Components:
 - ASIC (in package 5x5 or 7x7 mm)
 - Inductor (4mm thick, 8-14mm diameter)
 - SMD components
 - Design compatible with tracker layout (evolving) in terms of area, volume, material budget, cooling

Integration in ATLAS SCT module design From D.Ferrere - University of Geneva

ACES workshop 2009

G.Blanchot, PH/ESE

- Foreword and objectives.
- Distribution Scheme.
 - Proposed scheme.
 - On-module distribution.
 - Example of power-up sequence.
 - On-stave distribution.
 - Protection features.
- Integration issues.
- Noise issues.
- > Conclusion.

EMC: noise issues

- 4 generations of converter prototypes using discrete commercial components developed
- > Aim:
 - Understand noise sources
 - Study and verify appropriate countermeasures
 - Provide experiments with hardware for integration studies
 - Develop know-how for final integration
- Large decrease of noise observed on last prototypes
- With small pi-filters, noise level meets class-B of CISPR11

Output common mode noise (current) measured with the CERN-ESE standard test bench for prototypes 3 and 5 (difference: layout of the board, and presence of pi-filters in proto5)

Tests on the TOTEM Front-End

Expose the front-end system to the DC-DC converter conducted noise (Common Mode and Differential Mode currents)

Proto#3 (discrete), **Proto#4 (ASIC)** supply the **2.5V** DC for both the analog and the digital circuits of the hybrid.

	Nominal noise	Proto #3 with long cables	Proto #3	Proto #4
VFAT #1	1.76	1.76	2.00	1.81
VFAT #2	1.81	1.73	2.00	1.77
VFAT #3	1.68	1.62	1.69	1.55
VFAT #4	1.56	1.59	1.93	1.67

- Measurements above a ground plane
- LISN connected at the input of the converter
- Output of the converter directly connected at the hybrid decoupling capacitors

ACES workshop 2009

EMC issues

- Converters emit conducted noise.
 - Can be reduced by proper layout.
- Converters emit radiated noise.
 - Inductor should be shielded.
 - Coupling strongly decreases with distance.
- Given this, front-end systems can be powered by DCDC converters close to the tracker modules.

Conclusions

- An optimal powering scheme based on DCDC converters was worked out.
- The scheme enables high granularity of the power distribution while minimizing the losses and the required material.
- > The global efficiency on stave can be between 75% and 80%.
- The control of power nodes is more flexible than in LHC systems: nodes and modules can be individually powered from a control station.
- The scheme remains compatible with today's grounding and biasing of the detector.
- The technology to design converters that are compatible with B field, radiation and that emit low noise is today available.