System implementation of a power distribution scheme based on DC-DC converters

F.Faccio, G.Blanchot, S.Michelis, C.Fuentes, B.Allongue, S.Orlandi CERN - PH-ESE
S.Buso, G.Spiazzi

PEL, DEI, University of Padova (I)

Outline

> Foreword and objectives.
> Distribution Scheme.

- Proposed scheme.
- On-module distribution.
- Example of power-up sequence.
- On-stave distribution.
- Protection features.
> Integration issues.
> Noise issues.
> Conclusion.

Foreword

> Requirements:

- To deliver increased amount of power.
- To contain or even reduce thermal losses.
- To minimize the material needed to bring the power in.
- Cables
- Boards
- To be compatible with the environment
- Radiation,
- Magnetic field
- Space
> All images shown here are examples for ATLAS SS staves

An Optimal DCIDC Scheme

> The scheme proposed here results from the optimization of several parameters in different converter topologies:
> Conversion ratios less than 6 per stage.
> Efficiency above 80\% per stage.
$>$ Switch frequency that minimizes the size of components.
> Granularity:
> That enables scalable control system.
> That provides individual control to each front-end ASIC.
> Reduction of losses in cables and copper traces.
> This resulted in a two stage scheme based on a buck converter per module, followed by individual switch capacitors converters in each front-end ASIC.

Outline

> Foreword and objectives.
> Distribution Scheme.

- Proposed scheme.
- On-module distribution.
- Example of power-up sequence.
- On-stave distribution.
- Protection features.
> Integration issues.
> Noise issues.
> Conclusion.

Proposed distribution scheme (1)

Proposed distribution scheme (2)

Summary of features

> Modular approach, very flexible - building blocks can be custom assembled following system requirements
> Very efficient to provide only required power to every system component, at appropriate voltage
> Conventional grounding scheme
> Conventional detector powering
> We can build on the experience accumulated for LHC experiments (and others)

On-module distribution

Granularity and control

> Each module turned on-off independently by HC
> Each FE chip turned on-off independently by HC

$$
\Longrightarrow \quad \begin{gathered}
\text { Failing chips } \\
\text { can be turnedrid/ off withoutes } \\
\text { creating local "hot spots" }
\end{gathered}
$$

Example power-up sequence

1. Power to the stave $(10-12 \mathrm{~V})$. SC, HC and optical communication turns on
2. HC turns on module power.
3. HC turns on sequentially FE chips

Power distribution on stave

> Hypothesis for this conceptual design:

- Conversion ratio $1 / 2$ on-chip, $1 / 6$ on module
- 20 FE chips per hybrid
- 2 hybrids per module
- 12 modules per stave
- Total $=480$ FE chips (current on 12 V line reduced by almost 12 x)

Protection features

> Conversion stage 1 components:

- ASIC
- Coreless inductor
- SMD components
- ASIC embeds soft-start and protections

This is a routine in commercial components

- Over-current (cycle by cycle current control)
- Over-voltage
- Over-temperature (thermal shutdown protection)
- In case a problem is detected, the output is disabled and a flag is raised (power-good pin not asserted)

Distribution in end-caps

> The power distribution system described can be used in exactly the same way in the petal geometry of the end-caps (or by the way in any other geometry)

Outline

> Foreword and objectives.
> Distribution Scheme.

- Proposed scheme.
- On-module distribution.
- Example of power-up sequence.
- On-stave distribution.
- Protection features.
> Integration issues.
> Noise issues.
> Conclusion.

Towards integration of stage 1

> Compact design

- Reducing the size of the full converter
- Components:
- ASIC (in package 5×5 or $7 \times 7 \mathrm{~mm}$)
- Inductor (4 mm thick, $8-14 \mathrm{~mm}$ diameter)
- SMD components
- Design compatible with tracker layout (evolving) in terms of area, volume, material budget, cooling

Integration in ATLAS SCT module design From D.Ferrere - University of Geneva

Outline

> Foreword and objectives.
> Distribution Scheme.

- Proposed scheme.
- On-module distribution.
- Example of power-up sequence.
- On-stave distribution.
- Protection features.
> Integration issues.
> Noise issues.
> Conclusion.

EMC: noise issues

> 4 generations of converter prototypes using discrete commercial components developed
> Aim:

- Understand noise sources
- Study and verify appropriate countermeasures
- Provide experiments with hardware for integration studies
- Develop know-how for final integration
> Large decrease of noise observed on last prototypes
> With small pi-filters, noise level meets class-B of CISPR11

Output common mode noise (current) measured with the CERN-ESE standard test bench for prototypes 3 and 5 (difference: layout of the board, and presence of pi-filters in proto5)

Tests on the TOTEM Front-End

Expose the front-end system to the DC-DC converter conducted noise (Common Mode and Differential Mode currents)

Proto\#3 (discrete), Proto\#4 (ASIC) supply the 2.5V DC for both the analog and the digital circuits of the hybrid.

	Nominal noise	Proto \#3 with long cables	Proto \#3	Proto \#4
VFAT \#1	1.76	1.76	2.00	1.81
VFAT \#2	1.81	1.73	2.00	1.77
VFAT \#3	1.68	1.62	1.69	1.55
VFAT \#4	1.56	1.59	1.93	1.67

- Measurements above a ground plane
- LISN connected at the input of the converter
- Output of the converter directly connected at the hybrid decoupling capacitors

EMC issues

> Converters emit conducted noise.

- Can be reduced by proper layout.
> Converters emit radiated noise.
- Inductor should be shielded.
- Coupling strongly decreases with distance.
> Given this, front-end systems can be powered by DCDC converters close to the tracker modules.

Conclusions

> An optimal powering scheme based on DCDC converters was worked out.
> The scheme enables high granularity of the power distribution while minimizing the losses and the required material.
> The global efficiency on stave can be between 75% and 80%.
> The control of power nodes is more flexible than in LHC systems: nodes and modules can be individually powered from a control station.

- The scheme remains compatible with today's grounding and biasing of the detector.
> The technology to design converters that are compatible with B field, radiation and that emit low noise is today available.

