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Proposed distribution scheme (1)Proposed distribution scheme (1)oposed d st but o sc e e ( )oposed d st but o sc e e ( )

Distribution based on 2 conversion stagesDistribution based on 2 conversion stages Slide taken from Distribution based on 2 conversion stagesDistribution based on 2 conversion stages
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Building BlocksBuilding Blocks
Stage1:

10-12V

ct
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Issues:
• High efficiency
• Low noiseStage1:

•Inductor-based buck
•Vin = 10-12 V
•Vout = 2.5-1.8 V
•Pout = 2-4 W

10-12V
2.5 V D

et
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• Use of high voltage technology
• Use of air core inductor

Stage2:
•On-chip switched capacitor

GBT,O
pto Stave 

Controller

1.25V

10-12V Intermedia
te voltage 
bus • Use front end technology

•Vin = 2.5-1.8 V
•Conversion ratio ½ or 2/3
•Iout = 20-100 mA
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Semiconductor technology (1)Semiconductor technology (1)Semiconductor technology (1)Semiconductor technology (1)

The converter requires the use of a technology offering both low-The converter requires the use of a technology offering both low-
voltage and high-voltage (15-20V) transistors
Properties of high-voltage transistors largely determine converter’s 
performancep

Need for small Ron, and small gate capacitance (especially Cgd) for given Ron!

Survey of available options covered 5 technologies Prototype in 0.35μm
Best results with 0.25um SGB25V GOD technology from IHP

yp μ

Tech 
Node 

Trans type Max 
Vds 

Vgs 
(V)

Tox 
(nm)

Ron*um 
(kOhm*um)

Status

(um) (V)

0.35 Lateral
Vertical

14
80

3.5
3.5

7
7

8
33

Tested

0.18 Lateral 20 5.5 12 4.75 Tested

0.13 Lateral 20 4.8 8.5 7 Tested

0.250.25 LateralLateral 2020 2.52.5 55 44--55 TestedTested
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0.18 Lateral 20 1.8 4.5 9.3 First MPW April 09



Semiconductor technology (2)Semiconductor technology (2)Semiconductor technology (2)Semiconductor technology (2)
XX--ray irradiation (TID) up to 350Mrdray irradiation (TID) up to 350Mrd
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At 5·1015 p/cm2, Ron 
decrease <60% 
(NMOS) and <80% 
(PMOS)
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Semiconductor technology (3)Semiconductor technology (3)Semiconductor technology (3)Semiconductor technology (3)
One technology (0.25μm node) has demonstrated radiation tolerance 
compatible with benchmark:

NMOS Ron decrease below 60% for 2.5·1015 n/cm2 (1MeV equivalent)
Vth shift manageable (below 200mV for NMOS, 400mV for PMOS @ 
350Mrd)350Mrd)
Negligible leakage current with TID
Overall, radiation could affect converter performance as small drop of 
efficiency (below 5%)

One technology (0.13μm node) could satisfy requirements for 
installation further from collision point, where fluence is limited below 
1·1015 n/cm2 (1MeV equivalent)
The other 2 technologies are less performant and will not be consideredThe other 2 technologies are less performant and will not be considered 
further
Conclusion:

While starting prototype work in the 0.25um technology, another 0.18μm 
t h l ill b t t d i 2009 ( l k f d ithtechnology will be tested in 2009 (we look for a second source with 
comparable radiation performance)
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Inductor design: requirementsInductor design: requirementsInductor design: requirementsInductor design: requirements

Coreless (no ferromagnetic material)Coreless (no ferromagnetic material)
Value: from 150 to 700nH (this is feasible with 

i )air-core)
Compact for high integration
Light for low material budget
With small ESR both in DC and AC (at theWith small ESR both in DC and AC (at the 
switching frequency) for high efficiency
It needs to be shielded for low radiated noiseIt needs to be shielded for low radiated noise
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Air core inductorsAir core inductorsAir core inductorsAir core inductors
We simulated (Ansoft Maxwell 3D) the magnetic field from inductors of different 
type, and the effect of shieldingyp g

An unshielded solenoid 
radiates considerably the 
surrounding space

Air-core toroid contains the main magnetic field (the one 
determining the inductance value)…

A 100μm Al shield is placed 
65 mm

65 mm

4mm far from the solenoid not 
to affect the inductance value 
(and create losses)
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Solenoid without shield
Solenoid with shield at 4mm

The shield is very 
effective in 
decreasing the EM 
radiation

… but it still radiates 
because of the one-
loop current path 
around its center
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c radiation 
But the volume is 
largely increased 
AND this structure is 
mechanically 
unstable as it is

This can in principle be 
shielded effectively by 
“wrapping” the inductor in 
an Al layer
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“Optimized” PCB toroid (1)“Optimized” PCB toroid (1)Optimized  PCB toroid (1)Optimized  PCB toroid (1)
Custom design exploiting PCB technology: easy 
to manufacture, characteristics well reproducible
Design can be optimized for low volume, low 
ESR, minimum radiated noise
With the help of simulation tools (Ansoft Maxwell 
3D and Q3D Extractor), we estimated 
inductance, capacitance and ESR for differentinductance, capacitance and ESR for different 
designs. This guided the choice of the samples 
to manufacture as prototypes
The addition of two Al layers (top, bottom) 
shields the parasitic radiated field efficiently
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“Optimized” PCB toroid (2)“Optimized” PCB toroid (2)Optimized  PCB toroid (2)Optimized  PCB toroid (2)
First samples manufactured at the CERN PCB shop
Inductance, shield efficiency, ESR in agreement with 
simulation
ESR can be decreased still by 2x by “filling” the vias –
this has not yet been donethis has not yet been done
Now that the concept has been validated, we prepare 
for a prototype run with all the final characteristics 
(ESR, volume, shield material)
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EMC: conducted noiseEMC: conducted noiseEMC: conducted noiseEMC: conducted noise
4 generations of converter prototypes4 generations of converter prototypes 
using discrete commercial 
components developed
Aim:

U d t d iUnderstand noise sources
Study and verify appropriate 
countermeasures
Provide experiments with hardware for 
integration studiesintegration studies 
Develop know-how for final integration

Large decrease of noise observed
With small pi-filters, noise level meets p ,
class-B requirements of CISPR11 
(voltage on line and neutral)

Output common mode noise (current) measured with the CERN-ESE standard test bench 
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for prototypes 3 and 5 (difference: layout of the board, and presence of pi-filters in proto5)



ASIC development ASIC development –– 11stst generationgenerationS C de e op e tS C de e op e t ge e at oge e at o
First generation prototype (include only fundamental 
building blocks)
Manufactured in AMIS 0.35μm 
Features:
•• VINVIN andand PowerPower RailRail OperationOperation fromfrom ++33..33VV toto ++2424VV
•• FastFast TransientTransient ResponseResponse -- 00 toto 100100%% DutyDuty CycleCycle
•• 1414MHzMHz BandwidthBandwidth ErrorError AmplifierAmplifier withwith 1010V/V/μsμs SlewSlew RateRate
•• ExternalExternal oscillatoroscillator ProgrammableProgrammable fromfrom 250250kHzkHz toto 33MHzMHz
•• ExternalExternal voltagevoltage referencereference (nominally(nominally ((11..22V)V)
Submitted March 08
Mounted on PCBMounted on PCB
Test result presented in TWEPP08
Demonstrated working function of the fundamental 
building blocks
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ASIC development ASIC development –– 22ndnd generationgenerationS C de e op e tS C de e op e t ge e at oge e at o
Second generation prototype
Still f t d i AMIS 0 35

 

Still manufactured in AMIS 0.35μm 
Features:

VIN and Power Rail Operation from +3.3V to +12V
Selectable output voltage (nominal 2.5V)
Maximum output current: 3Ap
Fast Transient Response - 0 to 100% Duty Cycle 
14MHz Bandwidth Error Amplifier with 10V/μs Slew Rate 
Internal oscillator fixed at 1Mhz, programmable from 
400kHz to 3MHz  with external resistor
Internal voltage reference (nominally (1.2V)
Remote Voltage Sensing with Unity Gain 
Programmable delay between gate signals
Integrated feedback loop with bandwidth of 20Khz 

Submitted December 08, expected back in April 09
Mounted in 7x7mm QFN package

 

Mounted in 7x7mm QFN package

Third generation will be in the IHP 0.25μm 
technology
It will be a simple buck

Refined comparison with 2-phase interleaved with V-divider 
(alternative topology), using also prototypes, has indicated 
little advantage of this latter topology at the small load 
currents foreseen for a module
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ASIC development ASIC development –– futurefutureS C de e op e tS C de e op e t utu eutu e
Third generation will be in the IHP 0.25μm technology

Tests shows that this technology has better performance 
for radiation tolerance (total dose and ions)
for efficiency (lower on-resistance and capacitance)

The first integration is foreseen for May 13th

It will be a simple buck
Refined comparison with 2-phase interleaved with V-divider (alternative topology), using also prototypes, has indicated 
little advantage of this latter topology at the small load currents foreseen for a modulelittle advantage of this latter topology at the small load currents foreseen for a module

A second integration is foreseen for November 2009
It will be a buck including all the blocks with protections and soft start.
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Towards integrationTowards integrationTowards integrationTowards integration
Compact design

Reducing the size of the full converterReducing the size of the full converter
• Components:

ASIC (5x5 or 7x7 mm)
Inductor (4mm thick, 8-14mm diameter)
SMD components Dual Scheme: 2SMD components

Design compatible with tracker layout (evolving) 
in terms of area, volume, material budget, 
cooling

Dual Scheme: 2 
converters (analog and 
digital power)

INDUCTOR

Integration in ATLAS SCT module design
From D Ferrere

SMDSMD SMDSMD
SMDSMD

ASIC From D.Ferrere
University of Geneva

SMDSMDASIC

1.5-2 cm

1.5-2 cm
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Different conversion ratiosDifferent conversion ratiosDifferent conversion ratiosDifferent conversion ratios
½ Conversion½ Conversion 2/3 Conversion2/3 Conversion

Vin VoutΦ1
Φ2 Vin VoutΦ1

Φ2

Φ2 Φ2

Φ1 Φ1
Φ2

Φ2

Φ1

1 “fl i ” it1 “flying” capacitor
1 output capacitor
4 switches

2 “flying” capacitors
1 output capacitor
7 switches
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Efficiency, areaEfficiency, areaEfficiency, areaEfficiency, area

E ampleEfficiency:
Analytical model developed and integrated in 
mathcad for conversion ratio ½

It allows for estimating efficiency vs Rout and

Example:
Efficiency for a converter ½ in IBM 130nm technology
Vin=1.9V, Vout=0.93V, Iout=60mA, C=100nF

Ef
fic

ie
nc

y

It allows for estimating efficiency vs Rout and 
Frequency
Good agreement with Spice simulation in IBM 130nm 
technology (using I/O transistors)

Same work planned for conversion ratio 2/3

E

Area:
Estimate of on-chip area

Dependent on required efficiency

Freq (Hz)

Dependent on required efficiency
In the IBM 130nm technology, using I/O transistors, 
and for an efficiency ≥90%, it can be of the order of 

• 200x100 μm for ratio ½
• 200x200 μm for ratio 2/3

Off hi it

ηmio

Rout (Ω)
Off-chip capacitors

Size around 100-200 nF looks appropriate
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ConclusionConclusionConclusionConclusion
Power distribution using DCDC converters is conventional and very flexible

System can be “customized” using a set of building blocks (buck converter for 
stage 1, switched capacitor converters on-chip, possibly even linear regulators)

Main difficulties in the development of a custom buck converter for stage 1 are 
being solved

Semiconductor technology satisfying radiation requirements has been found
Inductor design has been optimized and experimentally verified
Techniques for ASIC design are being learnt, and first prototypes have been 
developed
Large progress in understanding noise issues has been made and verified on 
prototypes (meeting class B requirements)

Main focus of our activity for 2009:
Design of the ASIC buck converter in the IHP 0.25μm technologyg μ gy
Integration of ASIC, PCB inductor and SMD components in compact DCDC 
converter boards representative of the final integration level achievable
Improve understanding and working tools for switched capacitor converters 
(especially ratio 2/3). Further involvement will depend on the activity of other 
groups
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