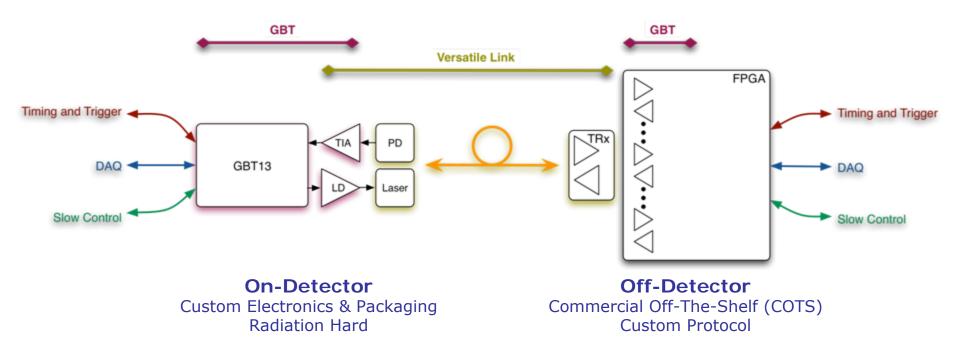
GBT Project Status

Paulo Moreira

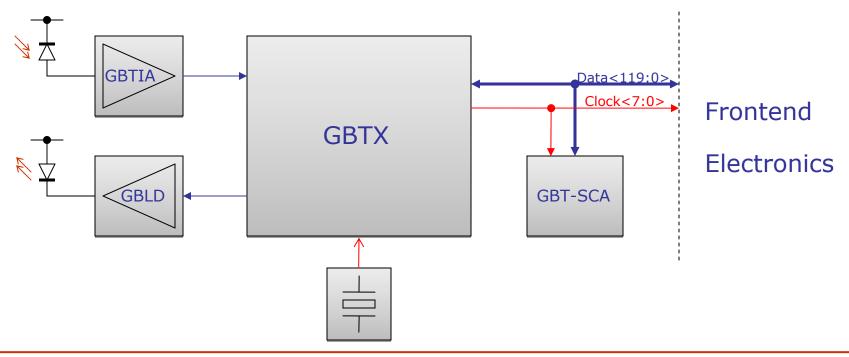
2009/03/04 – CERN Switzerland

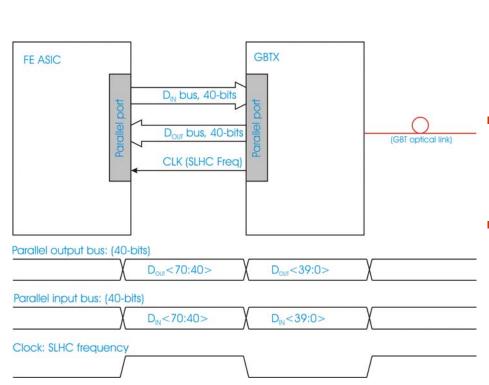

http://cern.ch/proj-gbt

Defined in the "DG White Paper"

- "Work Package 3-1"
 - Objective:
 - Development of an high speed bidirectional radiation hard optical link
 - Deliverable:
 - Tested and qualified radiation hard optical link
 - Duration:
 - 4 years (2008 2011)

Radiation Hard Optical Link:


- Versatile link project:
 - Opto-electronics
 - Radiation hardness
 - Functionality testing
 - Packaging
- GBT project:
 - ASIC design
 - Verification
 - Functionality testing
 - Packaging


GBT Chipset

- Radiation tolerant chipset:
 - GBTIA: Transimpedance optical receiver
 - GBLD: Laser driver
 - GBTX: Data and timing and transceiver
 - GBT-SCA: Slow control ASIC
- Supports:
 - Bidirectional data transmission
 - Bandwidth:
 - Line rate: 4.8 Gb/s
 - Effective: 3.36 Gb/s

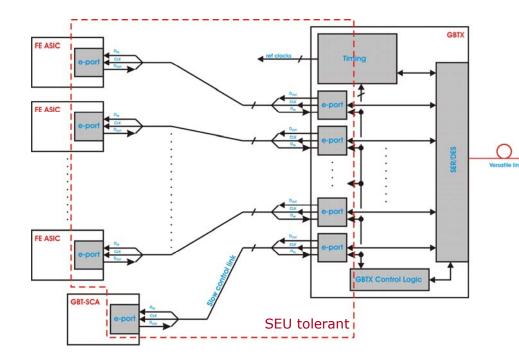
- The target applications are:
 - Data readout
 - TTC
 - Slow control and monitoring links.
- Radiation tolerance:
 - Total dose
 - Single Event Upsets

GBTX-TO-FRONTEND: Parallel Modes

P-Bus Mode:

- Simple parallel interface
- 40-bit wide bus
- Bidirectional
- Double Data Rate (DDR)

B-Bus Mode:

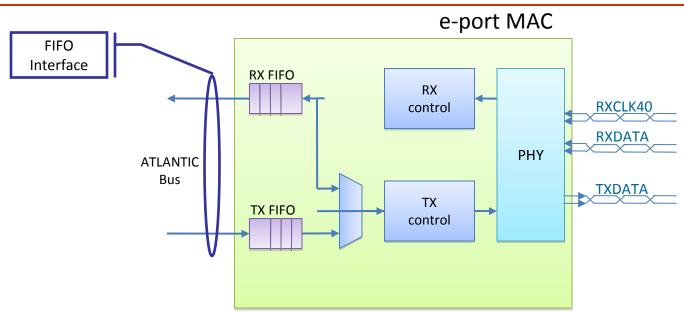

- A byte-bus mode is also available
- Up to five independent buses can be used simultaneously

Electrical levels:

- SLVS electrical level:
 - 100 Ω termination
 - 400 mV differential
 - 200 mV common mode
 - $I_{LOAD} = \pm 2 \text{ mA}$

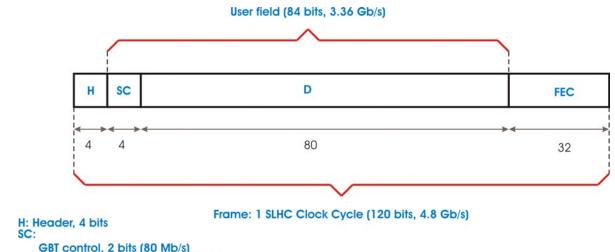
JEDEC standard, JESD8-13 Scalable Low-Voltage Signalling for 400 mV (SLVS-400) http://www.jedec.org/download/search/JESD8-13.pdf

GBTX-TO-FRONTEND: E-Link Mode


Mode	Туре	Data Rate	Notes	
OFF	Power off	-		
B-Bus	parallel	80 MB/s	Up to 5 Bytes (DDR)	
P-Bus	parallel	80 MW/s	One 40-bit word (DDR)	
2 ×	serial	80 Mb/s	Up to 40 serial links	
4 ×	serial	160 Mb/s	Up to 20 serial links	
8 ×	serial	320 Mb/s	Up to 10 serial links	
8 ×	serial-lanes	> 320 Mb/s		

- *GBT/Frontend interface:*
 - Electrical links (e-link)
 - Serial
 - Bidirectional
 - Up to 40 links

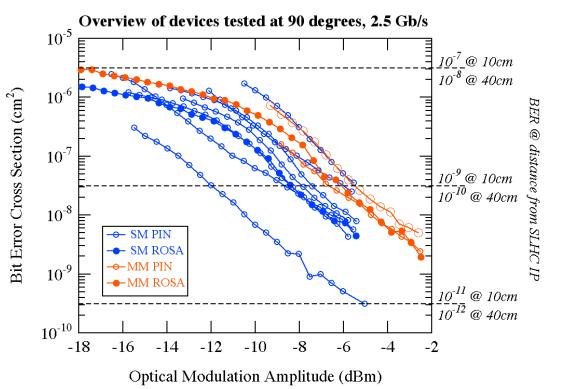
Programmable data rate:


- Independently in five groups
- 80 Mb/s, 160 Mb/s and 320 Mb/s
- Lanes:
 - To achieve > 320 Mb/s
 - Two or more e-links can be grouped forming a "lane"
- Slow control channel:
 - 80 Mb/s
- E-Link:
 - Three pairs: D_{OUT}/D_{IN}/CLK
 - SLVS
- E-Links will be handled by E-ports:
 - Electrically
 - "Protocol"

e-port Block Diagram

- The FE interfaces with the GBTX through an e-port
- The e-port handles:
 - The physical interface;
 - The multiple data rates;
 - The lanes (for bandwidth > 320 Mb/s)
 - Line coding:
 - Clock recovery (if required)
 - "AC coupling (if required)
- The user application does not have to care about the frame formats in full detail
 - It s done through a standard protocol:
 - Atlantic interface proposed (<u>http://www.altera.com/products/ip/altera/t-alt-atlantic.html</u>)
 - Fixed latency needs to be considered!
- An E-Link Port Adaptor (EPA) "macro" will be available for integration in the front-end ASICs

GBT Link Bandwidth

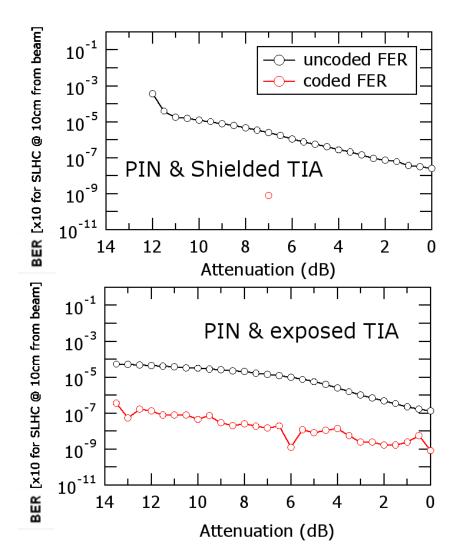

GBT control, 2 bits (80 Mb/s) Slow control port, 2bits (80 Mb/s) D: DATA/TTC/EC - User data, 80 bits (3.2 Gb/s) FEC: Forward Error correction, 32 bits

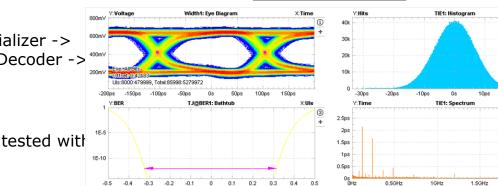
- Bandwidth:
 - User: 3.36 Gb/s
 - Line: 4.8 Gb/s
- Dedicated channels:
 - Link control: 80 Mb/s
 - Slow control channel: 80 Mb/s
- DC balance:
 - Scrambler
 - No bandwidth penalty
- Forward Error Correction and Frame Synchronization
 - Efficiency: 73%
 - To be compared with 8B/10B: 80% (no error correction capability)

- Link is bidirectional
- Link is symmetrical:
- Down-link highly flexible: (Will be clear later when discussing e-links)
 - Can convey unique data to each frontend device that it is serving
 - "Soft" architecture managed at the control room level
 - Other schemes would require dedicated topologies that will be difficult to accommodate on a generic ASIC like the GBTX
- Now demonstrated to be compatible with FPGAs

Single Event Upsets

- An issue that needs to be carefully addressed for SLHC links is the expected high rates of Single Event Upsets (SEU).
- Theses can be caused by:
 - Particle "detection" by Photodiodes used in optical receivers.
 - SEUs on PIN-receivers, Laser-drivers and SERDES circuits
- First SEU Test results on High Speed Links (1.5 2.5Gb/s)
 - Carried out first survey of results in different devices in Dec.07




12 device types tested

- PINs without TIA
- ROSAs with TIA
- Confirmed that for Error-rates below 10⁻¹² Error Correction is mandatory
- Measured Upsets lasting multiple bit periods for the first time

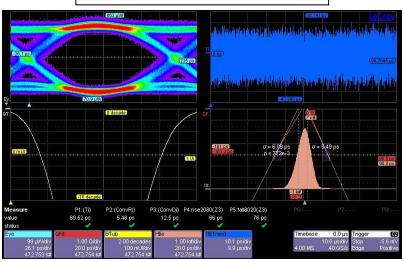
Objectives:

- Correct errors generated in the system:
 - PIN photodiode
 - Transceiver ASICs (TIA/LD)
 - Fast SERDES circuits (can't use TMR)
- Requirements
 - Minimal latency
 - Minimal coding overhead
 - Merged with line-coding
 - Compatible with FPGA embedded SerDes
- Proposed code:
 - Interleaved Reed-Solomon double error correction (Similar to today's CDs)
 - 4-bit symbols (RS(15,11))
 - Interleaving: 2
 - Error correction capability:
 - 2 Interleaving × 2 _{RS} = 4 symbols ≅ 16-bits
 - Code efficiency: 88/120 = 73%
 - Line speed: 4.80 Gb/s
 - Coding/decoding latency: one 25 ns cycle
- GBT frame efficiency: 70%
 - A line code is always required for DC balance and synchronization
 - For comparison, the Gigabit Ethernet frame efficiency is 80% (at the physical level)
 - At a small penalty (10%, when compared with the Gigabit Ethernet) the GBT protocol will offer the benefits of Error Detection and Correction

Full chain implemented:

- Scrambler -> Encoder -> Serializer -> link/cable -> Deserializer -> Decoder -> Descrambler
- XILINX Virtex-4FX
 - Electrical & Optical loop-back tested with commercial TRx
 - @ 4.8Gb/s: T_j = 75ps

ALTERA StratixII GX


- Encoder/decoder chain
- Optical loop-back
- @ 4.8 Gb/s: T_i = 89 ps
- @ 6.4 Gb/s: T_j = 83 ps

To be demonstrated:

- Can fixed and "deterministic" latency links be implemented with FPGAs?
- Engineers:
 - Sophie Baron CERN, Switzerland
 - Jean-Pierre Cachemiche CPPM, France
 - Frederic Marin CPPM, France
 - Csaba Soos CERN, Switzerland

Altera + opto TRx - 4.8 Gb/s

Xilinx - 4.8 Gb/s

X:Freq

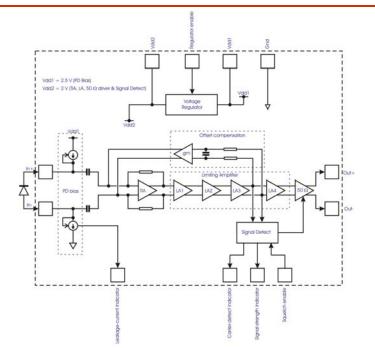
2GH7

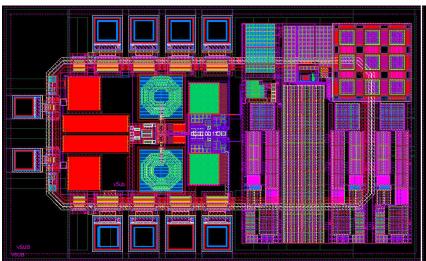
GBTIA

Main specs:

- Bit rate 5 Gb/s (min)
- Sensitivity: 20 μA P-P (10⁻¹² BER)
- Total jitter: < 40 ps P-P
- Input overload: 1.6 mA (max)
- Dark current: 0 to 1 mA
- Supply voltage: 2.5 V
- Power consumption: 250 mW
- Die size: 0.75 mm × 1.25 mm

Engineers :


- Ping Gui SMU, USA
- Mohsine Menouni CPPM, France


Packaging:

Part of the versatile link project

<u>Status:</u>

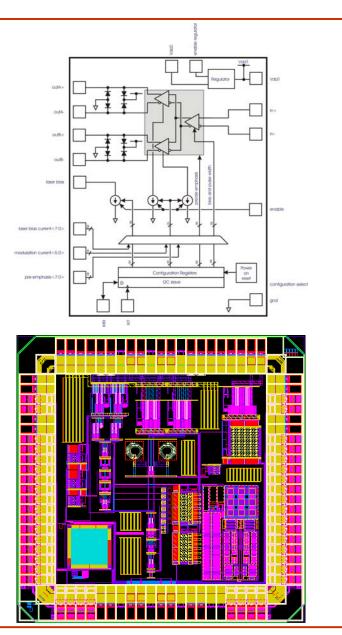
- Chip submitted: 2008/07/12
- Received: January 2009
- Tests in preparation!

GBLD

Main specs:

- Bit rate 5 Gb/s (min)
- Modulation:
 - current sink
 - Single-ended/differential
- Laser modulation current: 2 to 12 mA
- Laser bias: 2 to 43 mA
- "Equalization"
 - Pre-emphasis/de-emphasis
 - Independently programmable for rising/falling edges
- Supply voltage: 2.5 V
- Die size: 2 mm × 2 mm
- I2C programming interface

Engineers :


- Gianni Mazza INFN, Italy
- Angelo Rivetti INFN, Italy
- Ken Wyllie CERN, Switzerland

Packaging:

• Part of the versatile link project

<u>Status:</u>

- Chip submitted: 2008/07/12
- Received: January 2009
- Tests in preparation!

e-Port

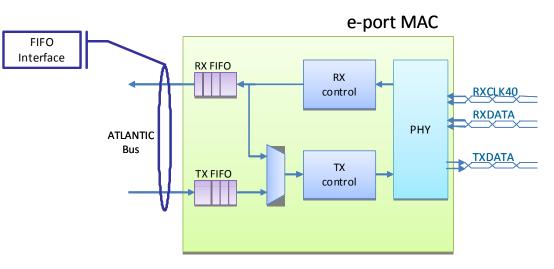
Specification work in progress

• Two "tentative" protocols already "proposed":

7B/8B

- Balanced
- Fixed latency
- Suitable for Trigger commands links
- RTL code under development

High-Level Data Link Control (HDLC)


- Packet oriented data
- Bandwidth efficiency (~96%)
- Non-fixed latency
- Suitable for slow control and data links
- RTL code ready

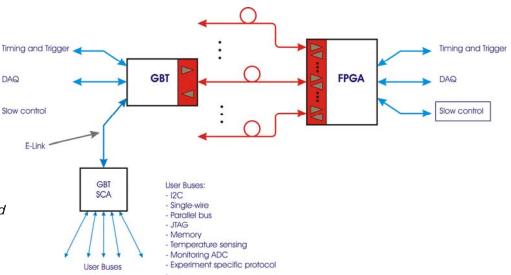
To be specified

- Clock recovery and phase alignment
- Lanes support

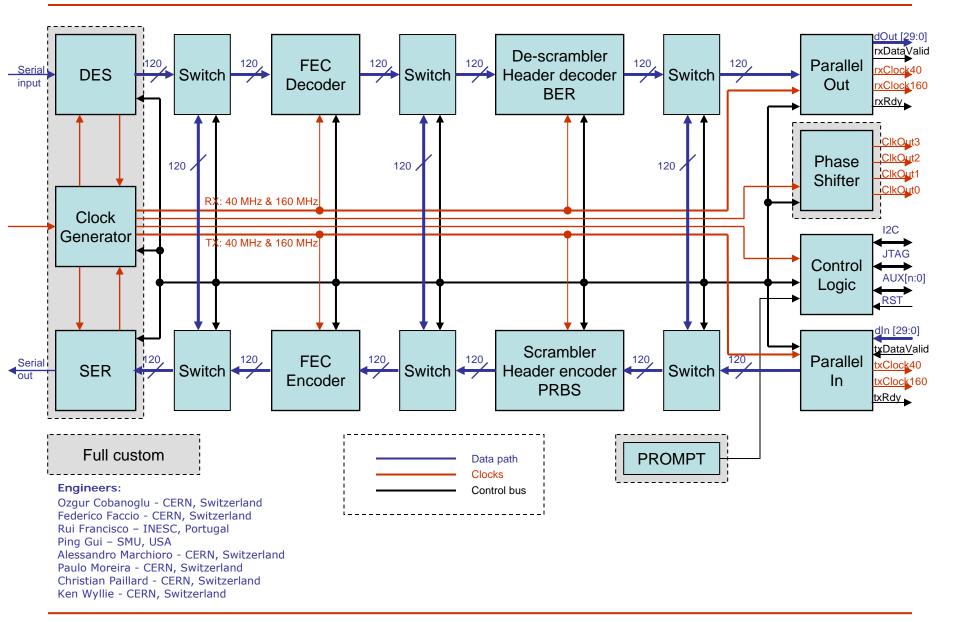
Engineers:

- Sandro Bonacini CERN, Switzerland
- Kostas Kloukinas CERN, Switzerland

GBT-SCA Main specs:


- Dedicated to slow control functions
- Interfaces with the GBTX using a dedicated E-link port
- Communicates with the control room using a protocol carried (transparently) by the GBT
- Implements multiple protocol busses and functions:
 - I2C, JTAG, Single-wire, parallel-port, etc...
- Implements environment monitoring functions:
 - Temperature sensing
 - Multi-channel ADC

Engineers:


- Alessandro Gabrielli INFN, Italy
- Kostas Kloukinas CERN, Switzerland
- Alessandro Marchioro CERN, Switzerland
- Antonio Ranieri INFN, Italy
- Giuseppe De Robertis INFN, Italy

<u>Status</u>

- Specification work undergoing:
- 1st Draft already available
- RTL design undergoing
- Tape-out: 4th Quarter 2009

GBTX Transceiver

2008

- Design and prototyping of performance critical building blocks:
 - TIA, laser driver, PLL, serializer, de-serializer, phase shifter
- First tests of optoelectronics components
 - (e.g. to understand SEU in PIN receivers)
- Proceed with the link specification meetings
- General link specification

2009

- Design/prototype/test of basic serializer/de-serializer chip
- Design/prototype/test of optoelectronics packaging
- Detailed link specification document

2010

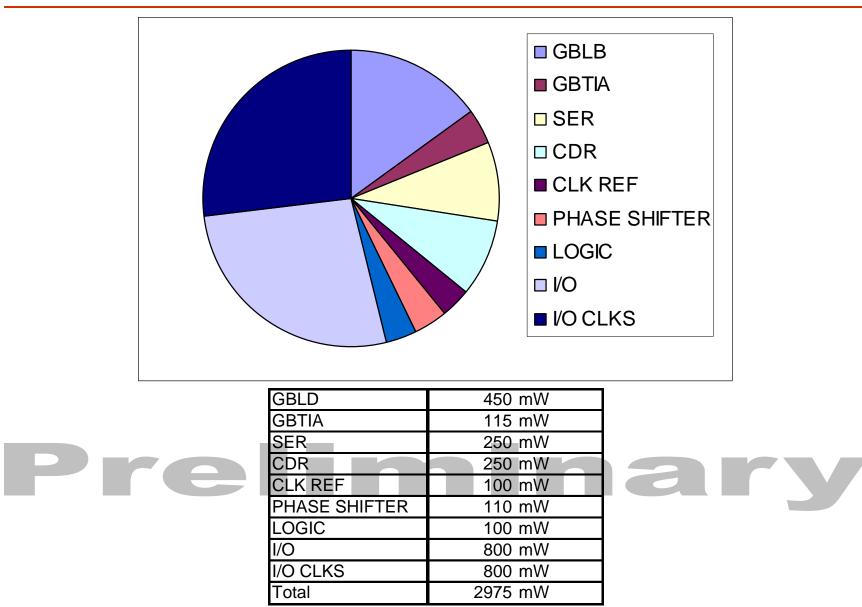
- Prototype of "complete" link SERDES chip
- Full prototype of optoelectronics packaging

2011

- Extensive test and qualification of full link prototypes
- System demonstrator(s) with use of full link
- Schedule of the final production version is strongly dependent on the evolution of the LHC upgrade schedule

Institute	Project Management	System Design	ASIC Design	FPGA Design	Opto- Electronics	Passive Components	Radiation Testing
CERN	×	x	x	x	x	x	x
CPPM Marseille			х	х			
FERMILAB					х		
INFN Bari			x				
I NFN Bologna		x	х				
I NFN Torino			х				
Oxford						x	х
SMU Dallas		х	х	х			х

Additional slides


- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides

- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides

- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides

- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides
- Additional slides

Power consumption: GBTIA + GBLD + GBTX

