The SPI (Serial Powering Interface) chip

- first results -

M.Trimpl, Fermilab

- SP Schemes / SPI Motivation
- Chip Architecture and Features
- SPi 001 Test Results (Shunt, ADC, current alarm, power down)
- Summary and Outlook
on behalf of:
A.Dyer, G.Deptuch, C.Gingu, J.Hoff, R.Lipton, A.Shenai, M.Trimpl, R.Yarema, T.Zimmerman - FNAL
R. Holt, G.Villani, M.Weber - RAL
N.Dressnandt , M.Newcomer - UPenn

Serial Powering Schemes

1) External shunt regulator + transistor

Good approach, but implies a high current shunt
> limited experience in HEP-IC community
2) Internal shunt regulator + transistor in each ROIC

Disadvantage: many power supplies in parallel
Matching issue can cause hot spots and potentially kill chips SP device enables to operate non SP-ROIC in SP mode
3) External $\mathrm{SR}+$ parallel shunt transistor in ROIC

feedback however more challenging and depends on implementation

Present setups and SPI Motivation

Setups using discrete components explored SP feasibility and new features (current monitoring and overcurrent protection)

Downsides of discrete setups

- Standard Shunts typ. current limited (less 4A)
- Power transistors not rad. tolerant
- esp. 4A for module is challenging
- spacious setup
- limited performance (e.g. dyn. impedance)
-> integrated / customized solution
ATLAS SCT setup at RAL (similar setup at LBNL,

Atlas pixel setup at Bonn U.)

$\sim 1 \Omega$ at $1 \mathrm{MHz},>50 \Omega$ for $>10 \mathrm{Mhz}$

SPI - Architecture Overview

versatile SP chip - list of basic features:

- shunt creates Vchip (scheme1), distr. shunt (scheme3)
- communication via multi drop bus (each SPI chip has 5bit address)
reduces number of str.-lines for SPI to minimum of 2 (3)
- spare AC coupled interfaces (comports)
- ADCs to monitor shunt and LR current
- 2x LinReg: separate analog / digital supply to hook up some chips (1-3) for tests Not proposed as a scaleable solution for a whole module (linregs should be part of ROIC, as e.g. in the $A B C n$)
- OverPower protection (avoids detector hot spots) (chip feature, needs external control)
- radtol. design techniques, TSMC 025MM process

(somehow) more details

Power on Reset:
all Registers set to a default condition when chip power comes up (current alarm default: 'hard wired' to 'false'!)

AC coupled interface:

7 separate comports, bi-directional (input/output) rate: $\sim 200 \mathrm{MHz}$ (selectable drive current max. 6 mA), point to point and multidrop with 10 receivers LVDS receiver with hysteresis

Main Shunt sets operation voltage: ~ 1.2.. 3 V (1.5..2.5 safe) (5.3bit to select, default: 1.5 V),
current capability: 1A min. , 4A to bypass full module (power down)
Distr. Shunt: class AB stage with dual output (redundancy)
shunt slaves are implemented in $A B C$ n ROIC

Linear requlator:

LDO regulator (folded cascode OTA and output stage)
Vout: $\sim 1.2-\sim 2.5 \mathrm{~V}$ (VDO $\sim 200-300 \mathrm{~mA}$ for 500mA), with ext. 1uF min. for stability
 4bit to select voltage -> $\sim 100 \mathrm{mV}$ steps

Layout / Floorplan

Chip size: $5.7 \times 2.8 \mathrm{~mm}^{2}, \sim 150$ bumps solder chip to PCB

test setup /assembly

SPI 001 (back since Nov2008), solder bumps placed by TSMC

- daughter board (R.Holt, RAL)
- FCOB assembly done at SiDet (E.Skup, FNAL)

Advantages of bumps bonds (for the SPI chip)

- better routing flexibility (high currents)
- more robust and shorter (100um vs 5 mm) as wire bonds
- reliable connection is essential in SP scheme
- better scale ability (if higher currents are needed)
- chip backside fully accessible for cooling / temp.monitor
\qquad

interface controller

C: 5bit Chip Adr. (30 chips on module)
R: Register Adr. (20 config + 3 ADC data-register)
D: 8bit register word
III: Instruction Code

- Reset Register
- Set Register
- Default (hard coded)
- Read ADC / Write Register

Chip and Register wildcard 10101 (21d)
$->$ configure register in all chips in a setup
$->$ reset all registers in all chips to default

'shunt' ADC - principle and implementation

- probing shunt current using replica mos (similar to current mirror)
- current-mode ADC
(good approach for ultra low voltage 1.3 V in a 2.5 V process!!)

- implementation chosen as flash ADC: simple and fast (also faster to design ;-))
- 6bit, LSB tunable (4bit) - dyn. range $\sim 100 \mathrm{~mA} \ldots \sim 2 \mathrm{~A}$ (probing low current or high range)
- adjustable threshold for alarm
- 4bits to tune the alarm - delay (TOT requirement): ~ 150 us ... 3 ms

single ADC (full) simulation

results: ADC / current alarm feature

demonstrates full functionality (qualitatively) of ADC and current alarm
procedure:

- shunt current (green trace eq.) is swept slowly from 50mA to 1A while ADC is read out continuously (ser_out : yellow trace)
- the alarm threshold programmed to 011100
- blue trace is current alarm (external signal)
shown in video:
- ADC bits $<0: 5>$ count / follow shunt current - exceeding threshold triggers current alarm and sets bit $<7>$ in the register

on-chip shunt

results: DC shunt characteristic

first AC behavior / linear regulator

OverPower Protection (option)

1. OverPower is NOT OverCurrent
-> current should stay the same in SP scheme!
2. Power reduction by collapsing the chip voltage
3. Goal: reduce Vchip to minimum e.g. 100 mV and $4 \mathrm{~A}->\mathbf{P} \sim 400 \mathrm{~mW}$

- in the order of nominal operation
- comparable to ROIC on module -> no hot spot!
Sounds crazy, but serial powering is already!
Procedure (Option) for SPI:

1. ADC reports current alarm
2. Vshunt overwitten by external source (vdd)
$->$ forces shunt-mos in lin.region \& reduces Vchip (Ron*I)
-> whole chip collapses, only shunt maintains operation
Future challenge on PCB side: voltage conserving techniques (module RnD: G.Villani) Upon successful demonstration: integration of most promising approach in SPI

magic christmas tree (power down)

Demonstrates power down capability of chip with external signal

voltage levels (at chip) @ 100mA I shunt:
normal operation power down (central module)
------ 4.62 V ------
------ 3.11 V ------
$(\Delta=1.55 \mathrm{~V})$
------ 3.07 V ------
($\Delta=1.55 \mathrm{~V}$)
($\Delta=1.51 \mathrm{~V}$)
------ 1.56 V ------
$\Delta ~ 3 \mathrm{mV}$)
1.559 V ------
($\Delta=1.55 \mathrm{~V}$)
------ 0.01 V ------
($\Delta=1.55 \mathrm{~V}$)
\qquad

Ron $<30 \mathrm{~m} \Omega$ (corresponds to previous parasitic simulation) extrapolation to 4A (long time tests needed!):
-> P ~ 480 mW (no hot spot)

Summary / Outlook

- Discrete SP setups went through many iterations, limitations reached (features vs size vs performance)
- SPI - Serial Powering I nterface: generic chip to explore SP schemes
- TSMC025MM, radiation tolerant design (except distr. shunt), High current shunt (1A+), distributed shunt, AC coupled comports, 2 Linregs, monitoring ADCs, over power protection options
- SPI 0.01 fabricated (120 chips) and FCOB successful
- first tests $->$ chip tested fully functional, measurements very promising
- stand alone chip characterization (datasheet) in progress at Fermi (C.Gingu)
- operation with $A B C n$ / AC coupling in preparation at RAL (M.Weber et al.)

Power shunt (DC)

Power shunt (DC)

Spice-Simulation with 1A per finger pair @120C, Vshunt=1.5V (worst case overpower-protection scenario)
-> average current per bump: ~100mA, max rating 240mA

Voltage drops:
20mV from pure MOS model (Ron)
5 mV from on chip routing (bump bond approach helps here a lot!)
25mV from 'Off chip' routing: Rbump, Rtrace Vdrop,total ~ 50mV

Conclusion:

- Take these numbers with a grain of salt!
- However, they give good indication for feasibility e.g. a different routing topology which didn't look too bad at first resulted in $\sim 500 \mathrm{mV}$ drop
- For 1A total current we should be on a safe side (note, this simulation uses 1A per finger (4 of them!)

Shunt performance (simulation)

--- - No Module Level Cap Filter 100 mA
-- -- 10uF cap on module supply 100 mA
10uF cap on module supply 500 mA

Main Shunt \square目

Ishunt $=100 \mathrm{~mA}(I \sin =10 \mathrm{~mA}), C L o a d=1 \mu \mathrm{~F}$ $\mathrm{Z}<\mathbf{0 . 5 \mathrm { mV } / 1 0 \mathrm { mA } = 5 0 \mathrm { m } \Omega}$

Compared to 1 .. 50 $\mathbf{5}$ for discrete components setup

