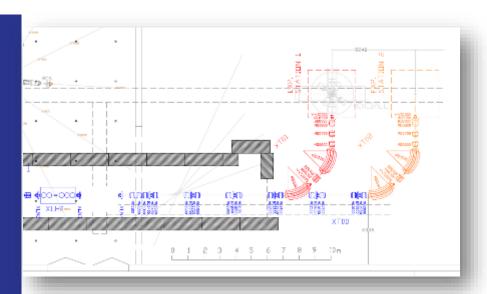
HIE-ISOLDE Project Status Report

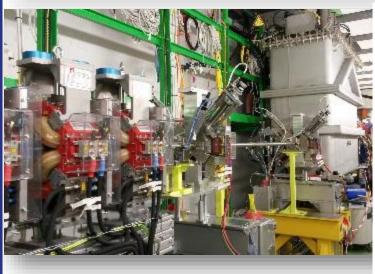
52nd ISOLDE & nTOF Technical Committee meeting February 3rd 2016

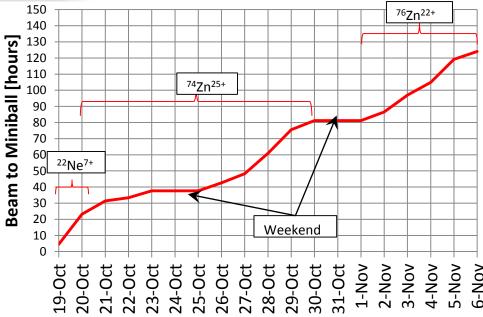

Y. Kadi On behalf of the HIE-ISOLDE Project Team

OUTLINE

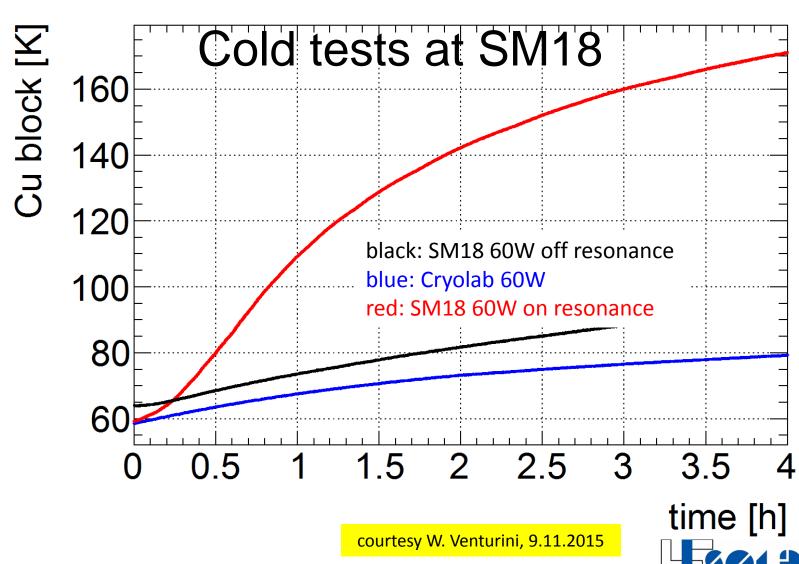
- Status of the Machine
 - ✓ RF coupler issues
 - ✓ CM2 assembly
 - ✓ Shut-down works
- Schedule 2016
 - ✓ Physics @ 5.5 MeV/u
- Conclusions

Main Achievements 2015

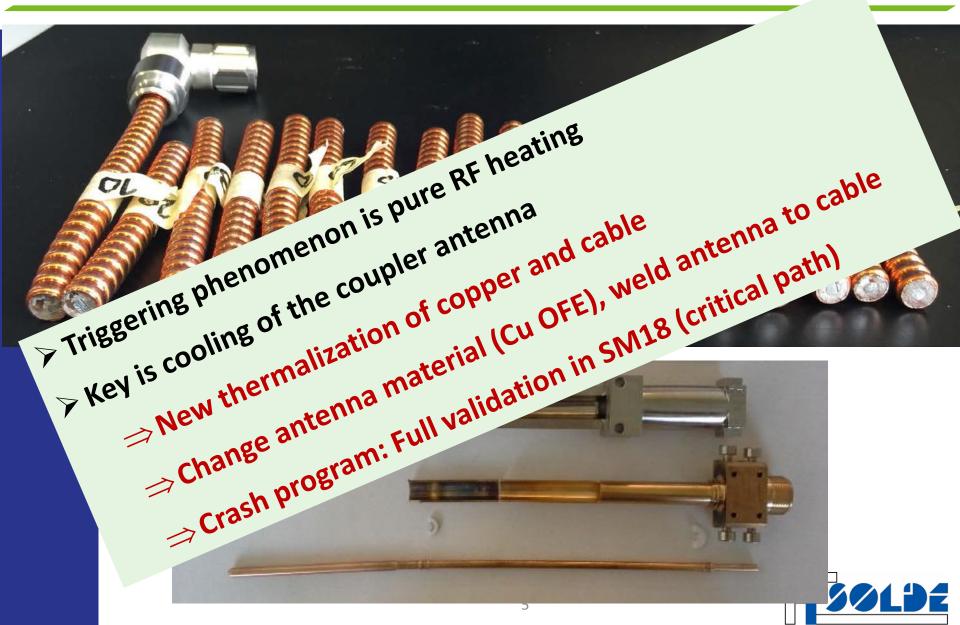

The 2015 Commissioning campaign achieved its goals


CM design choices validated

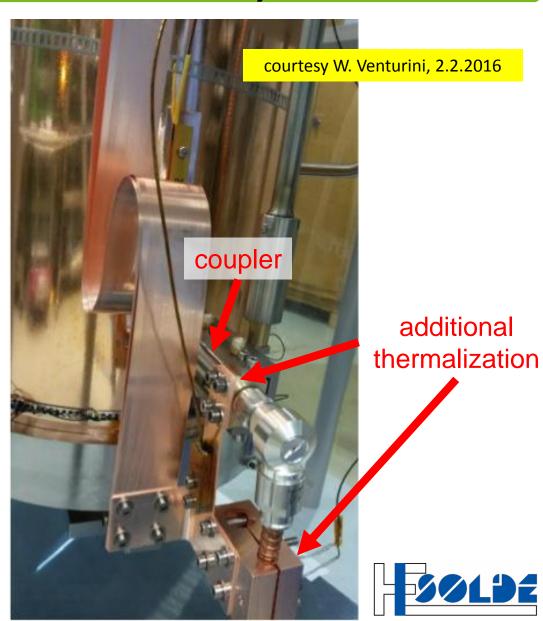
SC cavities performance were confirmed with beam


RF coupler problem identified, being addressed

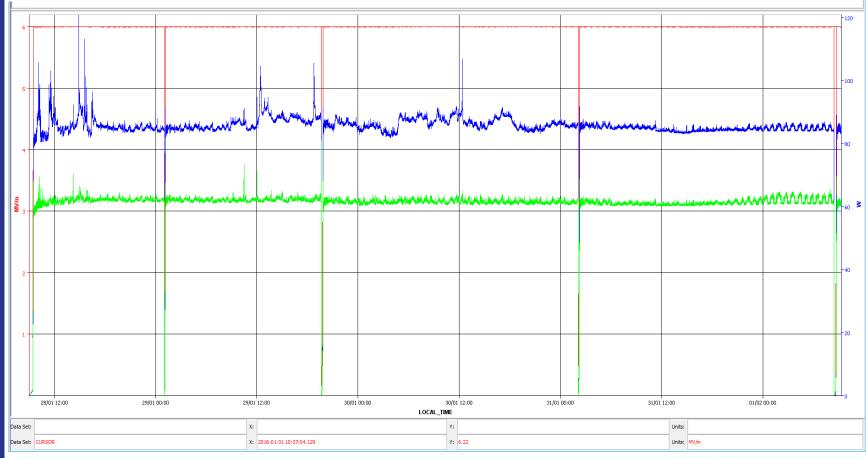
Physics run started on 19th October, on schedule



RF Line/Coupler Issue



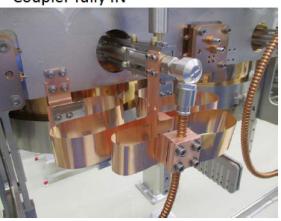
RF Line/Coupler Issue


Validation tests in SM18 (December 2015)

Heat run with LLRF loops closed (Jan 2016)

4 days at 6 MV/m with amplitude and phase controlled, and ~ 90 W forward power courtesy W. Venturini, 2.2.2016

Assembly of CM2


Courtesy Y. Leclerq, 29.01.2016

Achieved W04 - CM2

- Routing instrumentation
- Installation thermalization
 - Coupler thermalization OK
 - 3rd cable thermalization: rework needed : OK
- Tightening bellows
- Preparation for installation of additional temperature sensors
- Preparation for outside clean room tests
 - Pressure test equipment (CRG + AL4030)
 - HSE
 - VSC availabilities
 - Survey procedures

Coupler fully IN

Coupler fully OUT

Dismounting & Transport of CM1

Cryo Module 1 transport to SM18:

for retrofitting of the couplers.

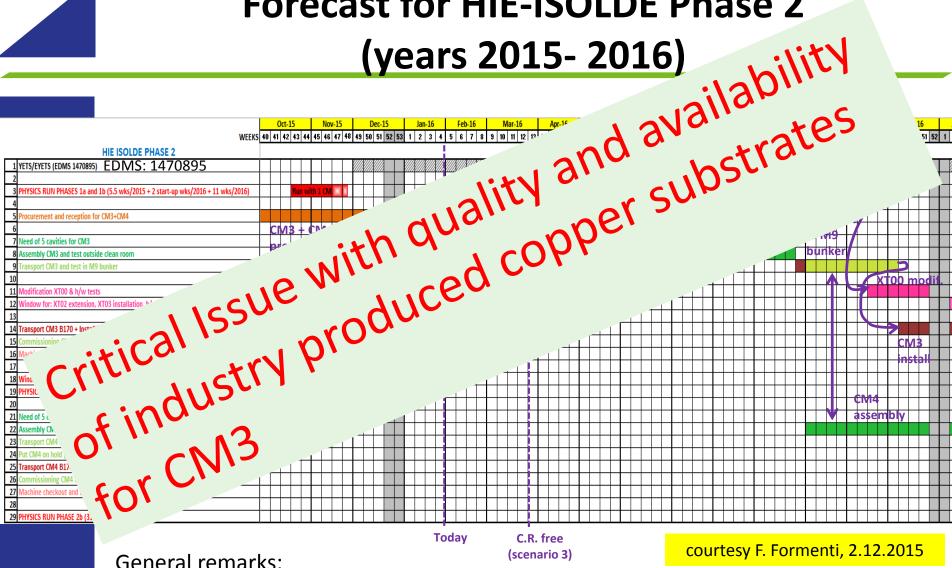
Friday 8 January.

To be received back end of March.

Preparation for running w/ CM1 + CM2

Main HIE ISOLDE installation and start-up tasks:

- Removal CM1: End-of-year 2015 / Wk1 2016
- Modifications and repair BI Dboxes: Jan 2015 April 2016
- Installation CM2: end Feb end March 2016
- Installation REX 9-Gap RF amplifier: end Feb end March 2016
- Re-installation CM1: end March end April 2016
- Cryo modifs & maintenance: Dec 2015 end April 2016
- HW & Beam commissioning CM1 & CM2: May mid Aug 2016



OUTLINE

- Status of the Machine
 - ✓ RF coupler issues
 - ✓ CM2 assembly
 - ✓ Shut-down works
- Schedule 2016
 - ✓ Physics @ 5.5 MeV/u
- Conclusions

Forecast for HIE-ISOLDE Phase 2

General remarks:

- ❖ Test in M9 bunker are foreseen for CM3 and CM4 while the HIE-ISOLDE facility is in operation
- ❖ XT00 modification for PHASE 2

CM2/CM3 cavities status (2015)

Productio n process	QS2	QS5	QS7	QS8	QS9	QS10	QS11	QS12	QS13	QS14
	2.3	5.2	7.2	8.1	9.1	10.1	11.1	12.1	13.1	14.1
Substrate reception	х	Х	x	х	X	x	x	x	WE34	WE34
Frequency pre-tuning	NP	X	X	X	X	x	NP	WE36		
Annealing	NP	NP	NP	X	Х	NP	NP	WE40		
Surface treatment	х	х	X	X	х	WE35	NP	WE41		
Nb coating	Х	Х	X	X	Cut	WE36	Pro	WE42		
RF vertical test at 4.5K	WE36	х	х	х	& inspection	WE40	Process st ubstrate n	WE45		
Storage /on hold	CM2	CM2	CM2	CM2	ection at	CM2	Process stopped due to substrate non-conformity	CM3		
Nb stripping					t CERN		due to nformity			

Performance of series cavities for CM2 (vertical test)

	Eacc (10W) [MV/strates for CMA 5.6 Set better substrates for CMA 6.6 Set better substrates for CMA
name	Eacc (10W) [MV/r trates
QS2.3	5.6 substi
QS5.2	better specs? treatments at RIV o bear.
097,10	get material thermal tannes of built of
How	nge rameters cavitles chined tion production
. Mel	5.6 Set better substrates Set better substr
· H	igh(er) New 05 15.7
•	

Status: CM3 & CM4

Achieved W04 – CM1 – CM3 – CM4

- CM1
 - Cleaning well advanced
 - Coordination on-going
- CM3-CM4
 - Thermal shield:
 - One reception + leak test complete: some limited fixing, oxidation.
 - 2nd one starting next week
 - Reservoir:
 - On hold
 - VV: OK
 - Frames: both leak tight and complete
 - Additional parts: reception ongoing

Overall Summary

- Radioactive beam delivered to Miniball experiment on Oct. 22nd 2015 as initially planned.
- The results of the hardware tests highlighted that CM1 is not fully qualified for sustained operation (problem on RF couplers):
 - CM1 has been de-installed and will be re-worked during this shutdown;
 - New RF couplers with improved thermalisation of the RF power line tested on QS12 and installed on CM2.
- New coherent planning is proposed for Phase 2
 - Agree with Collaboration on a common scope for Physics run 2 & 3 (2016-2017)
 - Preparation of CM3/CM4 components on-going
 - Issue with cavity substrates being addressed
- Procurement for the 3rd beam line and extension of XT02 for HELIOS has been launched

Thank you for your attention

HIE ISOLDE Cu QWR series production

courtesy W. Venturini, 2.2.2016

- Order for 15 (+5) pieces placed 25.05.2013
- Production planning: first cavity due by November 2013
- QS1 delivered in... June 2014
- QS1 non conformities: weld projections, geometry
- QS2 delivered in July 2014
- QS2 non conformities: traces of foreign material, geometry
- QS3 delivered in August 2014
- QS3: defects close to the weld HAZ seen for the first time
- Constant delays during production, and recurrent defect issues
- Several interventions at the company: weld parameters retuned, magnetic steering in EB machine fixed, weld preparation reviewed: each time problem seemed solved...
- But is was not: by QS11, 40% of the production was badly affected
- In July 2015 shrink fitting and welding at RI were put on hold
- We decided to start systematic investigations at CERN
- In December green light was given to RI to finalize QS14 and QS15
- Severe delays and uncertainties on the planning persisting in 2016

How to get usable substrates (degraded mode option for CM3)

courtesy W. Venturini, 2.2.2016

- QS14 at RI for final machining
- QS15 -> at RI for shrink fit and weld
- QS13 is under reparation at CERN with EBW. Can it be finalized at CERN?
- QS6 was laser "repaired" by RI: we could try to use it but would require tumbling + heavy SUBU, or EP
- QS11 is on hold at CERN, it has cracks but the geometry is finalized: repairing it here is the quickest way to restart coating!

Cryostat @ 4.5 K

Cryostat shield @ 50-75 K

Trans. line shield @ 50-75 K

Flexi. line with bayo @ 4.5 K

Transfer line @ 4.5 K

Dewar 2'000 L @ 4.5 K

Cryogenic valve @ 4.5 K

TOTAL

Cryogenic valve @ 50-75 K

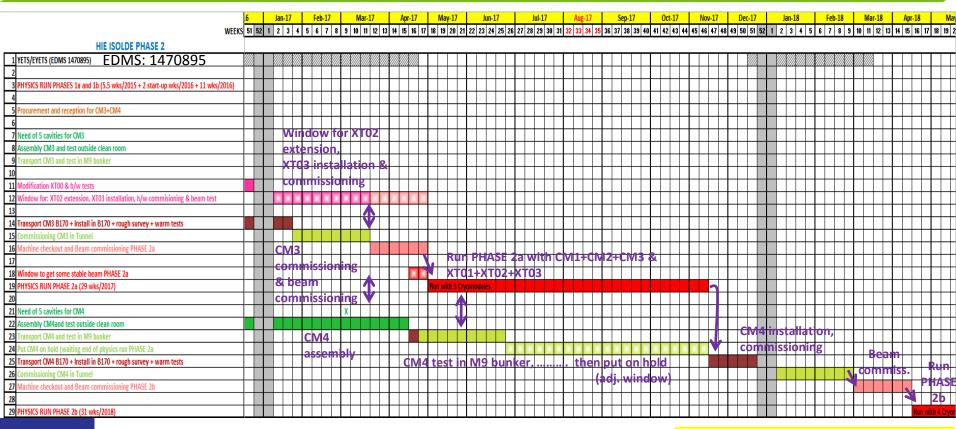
Current leads for 4 solenoids

T Gall	Theat load inventory for 4 CM						
Heat load type	Quantity [-]	Individual load [W] or [g/s]	Load @4.5 K [W]	Load @ 50K-75 K [W]	Liquefaction [g/s]		
Low-β cavity @ 4.5K (RF)	0	7	0				
High-β cavity @ 4.5K (RF)	20	10 16	200 320	← latest me	easures		
RF power supply cable	20	1	20				

0.6

3.1

Heat load vs existing cold box cooling power

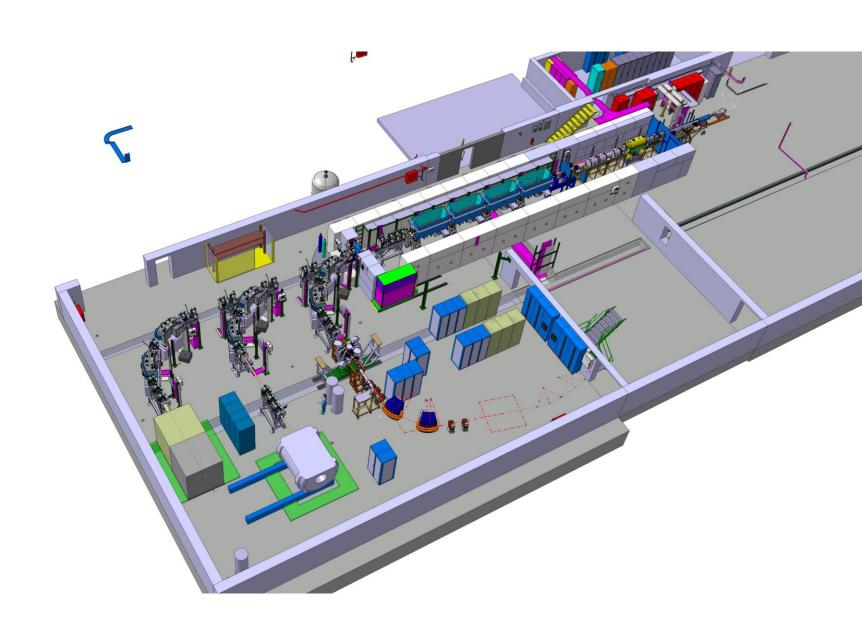

Summary table:

	4.5 K level [W]	50 K - 75 K level [W]	Liquefaction [g/s]
Client's heat load inventory with 2 cryo-mod	266 326	669	0.00
Client's heat load inventory with 4 cryo-mod	480 600	1227	0.00
Client's heat load inventory with 6 cryo-mod	680 800	1785	0.00
« ALEPH » cold box cooling power (measured)	630 ←	Not measured	1.7
« Hall 180 » cold box cooling power (measured)	1050	Not measured	1.5

▶ Remark:

«ALEPH» and «Hall 180» cold boxes require the same cycle flow of 155 g/s (provided by the compressors), but « ALEPH » cold box has only 2 turbines whereas « Hall 180 » has 3 turbines.

Forecast for HIE-ISOLDE Phase 2 (years 2017- 2018)


General remarks:

courtesy F. Formenti, 2.12.2015

- PHASE 2 run could be split into PHASE 2a (2017) and PHASE 2b (2018)
 - ➤ HIE-ISOLDE Physics workshop in February 1st 2016
- Regain RF performance with high-beta cavities of CM4

3D view of HELIOS on XT02

