
Electron Capture of ⁸B into highly excited states in ⁸Be

M.J.G. Borge¹, P.D. Fernández², L.M. Fraile³, H.O.U. Fynbo⁴, A. Heinz², <u>A.M. Howard⁴</u>, J.H. Jensen⁴, J.G. Johansen⁴, H.T. Johansson², B. Jonson², O.S. Kirsebom⁴, S. Lindberg², M.V. Lund⁴, I.M. Alonso⁵, M. Madurga¹, M. Munch⁴, E. Nacher⁵, T. Nilsson², A. Perea⁵, J. Refsgaard⁴, K. Riisager⁴, O. Tengblad⁵, R. Thies², F.J. Ulla³

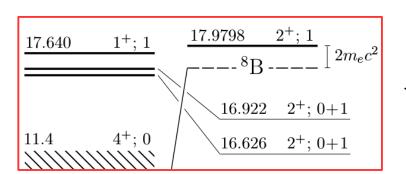
- 1 ISODE, CERN, Geneva, Switzerland
- 2 Fundamental Physics, Chalmers Univ. of Technology, S-41296 Göteborg, Sweden
- 3 Grupo de Física Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- 4 Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
- 5 Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

Introduction

Previous measurement

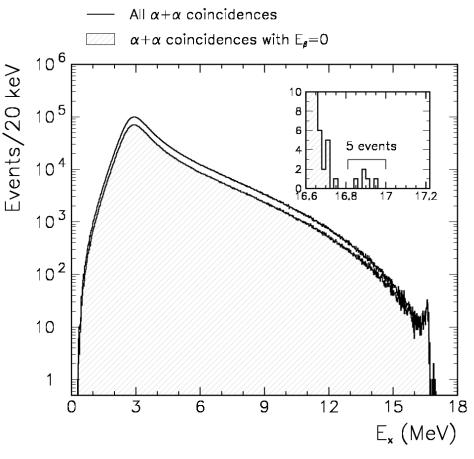
Measurement at IGISOL in 2008 – $5.5 \cdot 10^7$ total implantations (200 /s)

Primary goal – precision measurement of α-particle emission to constrain ⁸B neutrino spectrum


Is there any evidence for populating high-lying states in the data?

O. Kirsebom *et al.,* Phys. Rev. C **83** (2011) 065802

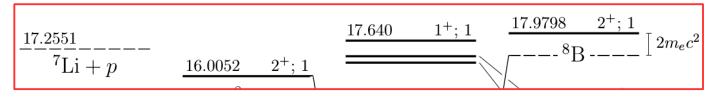
The 2⁺ doublet



Expected ratio of decay rates

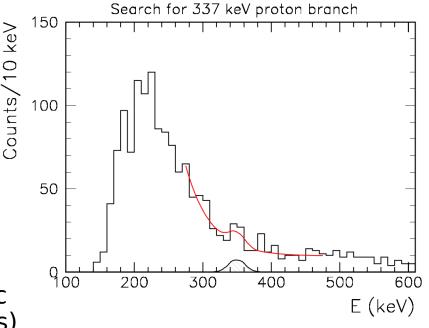
$$\frac{r_{16.9}}{r_{16.6}} = 2.4 \times 10^{-2}$$

Assumes zero GT strength to T=1 component


Consistent with the 5 events seen in the region of interest

Electron capture of ⁸B into high-lying states in ⁸Be 3. February 2016

β-delayed proton emission


Look for evidence of 337-keV proton emission

Expected branching ratio is 2.3•10⁻⁸ (0.3 decays expected)

Based on p spectator + ⁷Be core decay

Upper limit set at 1.3•10⁻⁵

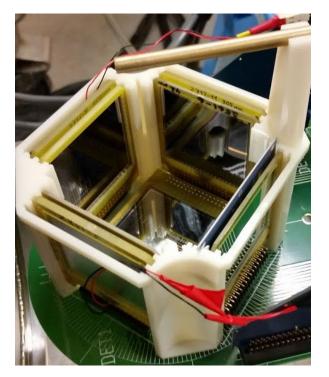
Background primarily from cosmic muons (observed in beam off runs)

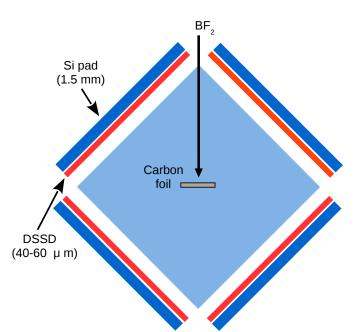
Current situation

In both cases the ⁸B yield is a limiting factor

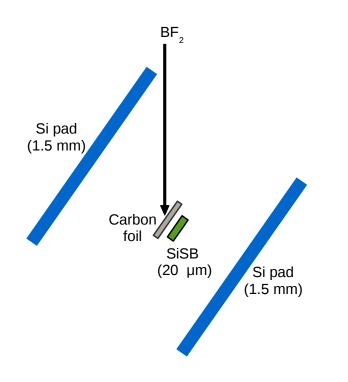
 $^{8}BF_{2}$ yield of 2.8 • 10⁴/ μ C now available – corresponds to ~4.2 • 10⁴/s

Measurement of proton emission at the expected level will be challenging


C. Seiffert, contribution to the ISOLDE workshop 2015


Proposed approach

Proposed setup (1)


Unambiguous signal from decays to the doublet states from detection of both outgoing a particles

In 6 shifts we expect a factor of 130 increase in statistics

Addition of thinner 40 μm DSSDs will increase sensitivity to low-energy proton branch

Proposed setup (2)

Focus on increasing sensitivity to low-energy proton branch

20-µm SiSB detector close to target, at least 10% coverage

Thick Si array surrounding for veto of coincident charge particles

In 9 shifts at least 25 counts at the predicted decay rate

Beam request

Estimates are based upon an implantation rate of 4.2•10⁴ *ions/s*

6 shifts Measurement using DSSD + pad telescopes Based on the IGISOL data we should observe \sim 500 decays through the 16.9-MeV member of the 2⁺ doublet

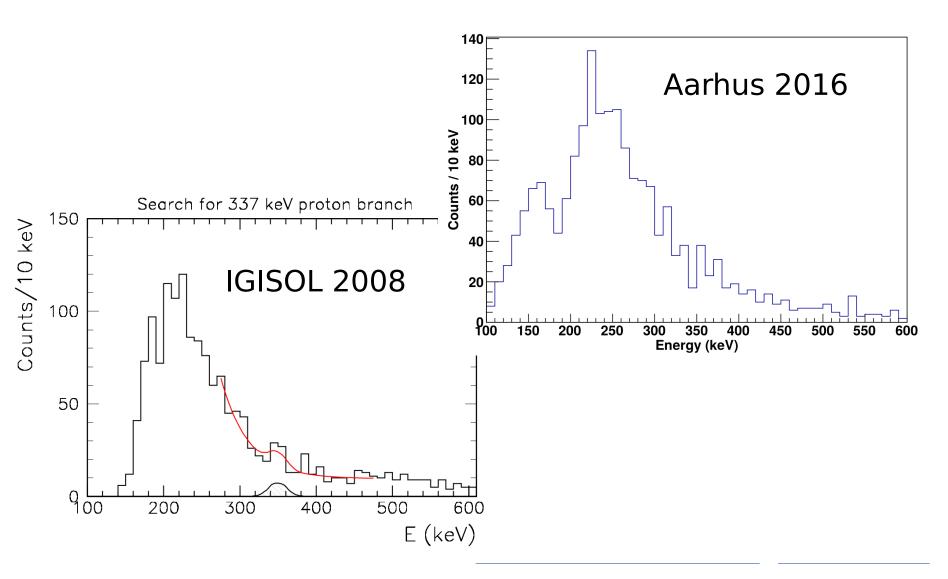
Delay of ~1 month to assess data and setup

9 shifts Measurement using a thin SiSB detector At the estimated branching ratio, at least 25 protons incident on the SiSB detector

Summary

⁸B beam available at ISOLDE with yield sufficient for the study of high-lying weakly populated states in ⁸Be

Experimental determination of the β -strength to the 2^+ doublet through measurement of the relative branching ratio


Halo structure of ⁸B through ec-delayed proton emission (spectator plus core decay)

15 shifts requested in total, split into separate runs of 6 and 9 shifts

Thank you for your attention

Electron capture of ⁸B into high-lying states in ⁸Be 3. February 2016