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Fig. 1. (a) Neutron-separation energies of Sn isotopes. (b) Isotopic shifts in the charge radii of Sn
isotopes normalized to the nucleus 120Sn. They are subtracted by an equivalent of the liquid-drop
difference. (c) Isotopic shifts in the charge radii of Sn isotopes. Experiment is denoted by open
circles, while calculation is denoted by crosses. As a guide for eyes, they are connected with solid
lines and dashed lines, respectively. Experimental data are taken from Refs. [1,16,17].

charge radii between neighboring isotopes.
Odd–even staggering of isotope shifts has been a longstanding problem in nuclear

physics. Only recently it is realized [4–8] that a density dependence seems to be necessary
for the pairing and that mean-field effects of the pairing seem to be responsible for
this phenomenon. Indeed, we cannot predict odd–even staggering of charge radii within
a framework of ordinary HF + BCS theory, even if we employ the density-dependent
pairing in the calculation.We need to take into account mean fields of the pairing to explain
the phenomenon.
Fig. 2(a) shows the HF + BCS calculation without mean fields of the pairing. As is

mentioned above, we could not reproduce odd–even staggering of isotope shifts even if
we employed density-dependent pairing in the calculation. Fig. 2(b) shows the HF + BCS
calculation with the pair mean field Γpair but without the neutron gap potential ∆n. Odd–
even staggering is now well reproduced except for heavy Sn isotopes. Fig. 2(c) shows the
HFB calculation with the gap potential but without the pair mean field. The figure shows
that the gap potential is also responsible for the odd–even staggering. The potential works
especially well for heavy Sn isotopes. Reminding that Fig. 1(c) is the full HFB calculation
where the pair mean field and the gap potential are both included in the Hamiltonian, we
may conclude that the pair mean field as well as the gap potential are both responsible for
the occurrence of odd–even staggering of Sn isotopes.
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Sn

experiment
HFB experiment

HFB

pairing	plays	a	fundamental	role

simple	model:
• pair	‘sca8ers’	on	the	Fermi	surface	to	many	states	(with	larger	r)
• unpaired	nucleon	‘blocks’	sca8ering reven	N	>	rodd	N}m
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N=Z

K	isotopes

36Ar

40Ca

38Kgs	(Iπ =	3+,T=0)

M. L. Bissell et al., Phys. Rev. Lett. 113, 052502 (2014) 

38Km	(Iπ =	0+,T=1)
all	T=1	pairs	should	behave	the	same
⇒	expect	to	see	effect	also	for	np	pair

ideal	test	cases:	
gs-isomer	comparison	in	N=Z	nuclides	
with	one	T=1	state

38,38mK	follows	expecta-on

• T=1	isomer	with	larger	rc
• δ⟨r2⟩gs,m 	larger	than	odd-even	staggering	
(unpaired	proton	in	37,39K)
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previously	discussed	case

• δ⟨r2⟩gs,m 	same	size	as	in	38m,38K
• different	sign	(g.s.	T=1	state)

F. C. Charlwood et al., Phys. Lett. B 690, 346 (2010).
M. L. Bissell et al., Phys. Rev. Lett. 113, 052502 (2014) 

• qualita?vely	expected	behavior
• δ⟨r2⟩gs,m 	twice	as	large	as	in	38m,38K
• not	reproduced	by	shell	model	calcula?on

B. Cheal, private communication. (2016)
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proposed	measurement
requires	charge	radii	of	26m,26Al	as	well	as	
odd-even	staggering	along	Al	isotopic	chain

⇒	requires	more	global	picture	on	

the	size	of	the	phenomenon
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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• most	precisely	studied	superallowed	β	emi8er
• rivals	precision	of	all	other	13	cases	combined	

(details	see	previous	talk)
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h(r) = a2
(

df

dr

)2

,

VC(r) = Ze2/r, for r!Rc,

= Ze2

2Rc

(
3 − r2

R2
c

)
, for r < Rc, (17)

with R = r0(A − 1)1/3 and Rs = rs(A − 1)1/3. The first three
terms in Eq. (16) are the central, spin-orbit, and Coulomb
terms, respectively. The fourth and fifth terms are additional
surface terms whose role we discuss shortly.

Most of the parameters were fixed at standard values,
Vs = 7 MeV, rs = 1.1 fm, and a = as = 0.65 fm. The radius of
the Coulomb potential was determined from the charge mean
square radius ⟨r2⟩1/2

ch of the decaying nucleus as determined
from elastic electron scattering; see Eqs. (21) and (22) in
Ref. [4]. The well radius r0 was similarly fixed, by requiring
that the charge density constructed from the square of the
proton wave functions bound in the well should also match
the charge mean square radius. Initially, with Vg and Vh set to
zero, the well depth V0 was adjusted so that the binding energy
of the least-bound orbital matched the experimental separation
energy.

From the shell-model calculation, we obtained the A-
particle wave functions, |i⟩ and |f ⟩, expanded into products
of (A − 1)-particle wave functions |π⟩ and single-particle
functions |α⟩. In Eq. (8) and the discussion that followed
it, we noted that the radial integral should depend on the
separation energies relative to the (A − 1) state, |π⟩. We
ultimately allowed this to happen, but initially we calculated
the value of δC2 under the assumption that the proton and
neutron radial functions, Rp(r) and Rn(r), have asymptotic
forms for all α that are fixed at the separation energies Sp and
Sn to the ground state of the (A − 1) nucleus. In this case,
the sums over π can be done analytically, and the computed
value of δC2 becomes independent of the shell-model effective
interaction. This result, which we label δI

C2, can be simply
expressed with the help of Eqs. (9) and (13):

δI
C2 ≃ 2$αg

. (18)

Here αg is the shell-model orbital of the transferred neutron in
the pickup reaction from the A-particle state |f ⟩ to the ground
state of the (A − 1)-particle nucleus.

We next removed our simplifying assumption and evaluated
the radial integrals with eigenfunctions of the Saxon-Woods
potential whose well depth was adjusted so that each eigen-
function matched the separation energy of the (A − 1) state to
which it corresponds, |π⟩. For an (A − 1) state at excitation
energy Ex , the corresponding separation energies are Sp + Ex

and Sn + Ex . We label these results δII
C2 and note that the values

now depend on the spectroscopic amplitudes, and hence on the
shell-model effective interaction, but not strongly.

So far, we have ignored the two surface terms in Eq. (17)
by setting Vg = 0 and Vh = 0. It can be argued, however, that
the central part of the potential, which in principle should be
determined from some Hartree-Fock procedure, should not be
continually adjusted. Instead, any adjustments made to match
separation energies should be to the surface part of the potential
rather than to the depth of the well. Thus, we also calculated

δC2 by fixing V0 separately for protons and neutrons to match
the ground-state parent separation energies Sp and Sn, and then
adjusting the strength of the surface term Vg (keeping Vh = 0)
so that the asymptotic forms matched the separation energies
Sp + Ex and Sn + Ex . These results are labeled δIII

C2.
Finally, our fourth method of calculation was the same as

the third, except that it was the second surface term Vh that was
adjusted to match separation energies, keeping Vg = 0. This
second term h(r) is even more strongly peaked in the surface
than g(r). These results are labeled δIV

C2.
On average, the method III values of δC2 are about 2% lower

than the method II values; and method IV values are about 7%
lower than the method II values for orbitals without any radial
nodes. For orbitals with one or more nodes, there is more of
the radial wave function in the surface region and methods III
and IV produce greater reductions.

3. Shell-model calculations

We now present our results for δC2 based on the extensions
of the shell-model spaces mentioned at the end of Sec. III A1.
In addition to adding the core orbitals mentioned there,
however, in some cases we have also been able to make use of
more recent effective interactions that have become available
since our last work. Specifically, we used the following
interactions in the various mass regions of interest: In the p
shell, we used the Cohen-Kurath interactions [21] and the more
recent PWBT interaction of Warburton and Brown [22]. In the
s, d shell, besides the universal interaction of Wildenthal [23],
we employed two new versions, USD-A and USD-B, of Brown
and Richter [24]. In the pf shell, we used the KB3 interaction
of Kuo-Brown [25] as modified by Poves and Zuker [26],
the FPMI3 interaction of Richter and Brown [27], and the
more recent GXPF1 interaction of Honma et al. [28,29]. For
cross-shell interactions between the major shells, we used the
interaction of Millener and Kurath [30]. Note that in many
cases we found it necessary to introduce some truncations
in the original model space in order to keep the calculations
tractible.

We made calculations for all 20 superallowed transitions
considered in our earlier work [1,4], and for each we calculated
δC2 in the four methods, I–IV, described in Sec. III A2 and
with the several interactions listed in the previous paragraph.
In Table II, we record only one sample result for δI

C2, δ
II
C2, δ

III
C2,

and δIV
C2 for each nucleus listed. However, our “adopted δC2”

values result from our assessment of all multiple-parentage
calculations made for each decay, not just those shown in
the previous three columns. The uncertainty assigned to each
adopted value reflects the uncertainty in the radius of the
Saxon-Woods potential (resulting from an uncertainty in the
nuclear rms radius to which it is adjusted), the spread of
results obtained with different shell-model interactions, and
the spread of results obtained with the different procedures
labeled II, III, and IV in the table.

B. Isospin-mixing correction δC1

The second (and smaller) contribution to δC is the isospin-
mixing correction δC1. For its evaluation, the radial integrals

025501-6
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with R = r0(A − 1)1/3 and Rs = rs(A − 1)1/3. The first three
terms in Eq. (16) are the central, spin-orbit, and Coulomb
terms, respectively. The fourth and fifth terms are additional
surface terms whose role we discuss shortly.

Most of the parameters were fixed at standard values,
Vs = 7 MeV, rs = 1.1 fm, and a = as = 0.65 fm. The radius of
the Coulomb potential was determined from the charge mean
square radius ⟨r2⟩1/2

ch of the decaying nucleus as determined
from elastic electron scattering; see Eqs. (21) and (22) in
Ref. [4]. The well radius r0 was similarly fixed, by requiring
that the charge density constructed from the square of the
proton wave functions bound in the well should also match
the charge mean square radius. Initially, with Vg and Vh set to
zero, the well depth V0 was adjusted so that the binding energy
of the least-bound orbital matched the experimental separation
energy.

From the shell-model calculation, we obtained the A-
particle wave functions, |i⟩ and |f ⟩, expanded into products
of (A − 1)-particle wave functions |π⟩ and single-particle
functions |α⟩. In Eq. (8) and the discussion that followed
it, we noted that the radial integral should depend on the
separation energies relative to the (A − 1) state, |π⟩. We
ultimately allowed this to happen, but initially we calculated
the value of δC2 under the assumption that the proton and
neutron radial functions, Rp(r) and Rn(r), have asymptotic
forms for all α that are fixed at the separation energies Sp and
Sn to the ground state of the (A − 1) nucleus. In this case,
the sums over π can be done analytically, and the computed
value of δC2 becomes independent of the shell-model effective
interaction. This result, which we label δI

C2, can be simply
expressed with the help of Eqs. (9) and (13):

δI
C2 ≃ 2$αg

. (18)

Here αg is the shell-model orbital of the transferred neutron in
the pickup reaction from the A-particle state |f ⟩ to the ground
state of the (A − 1)-particle nucleus.

We next removed our simplifying assumption and evaluated
the radial integrals with eigenfunctions of the Saxon-Woods
potential whose well depth was adjusted so that each eigen-
function matched the separation energy of the (A − 1) state to
which it corresponds, |π⟩. For an (A − 1) state at excitation
energy Ex , the corresponding separation energies are Sp + Ex

and Sn + Ex . We label these results δII
C2 and note that the values

now depend on the spectroscopic amplitudes, and hence on the
shell-model effective interaction, but not strongly.

So far, we have ignored the two surface terms in Eq. (17)
by setting Vg = 0 and Vh = 0. It can be argued, however, that
the central part of the potential, which in principle should be
determined from some Hartree-Fock procedure, should not be
continually adjusted. Instead, any adjustments made to match
separation energies should be to the surface part of the potential
rather than to the depth of the well. Thus, we also calculated

δC2 by fixing V0 separately for protons and neutrons to match
the ground-state parent separation energies Sp and Sn, and then
adjusting the strength of the surface term Vg (keeping Vh = 0)
so that the asymptotic forms matched the separation energies
Sp + Ex and Sn + Ex . These results are labeled δIII

C2.
Finally, our fourth method of calculation was the same as

the third, except that it was the second surface term Vh that was
adjusted to match separation energies, keeping Vg = 0. This
second term h(r) is even more strongly peaked in the surface
than g(r). These results are labeled δIV

C2.
On average, the method III values of δC2 are about 2% lower

than the method II values; and method IV values are about 7%
lower than the method II values for orbitals without any radial
nodes. For orbitals with one or more nodes, there is more of
the radial wave function in the surface region and methods III
and IV produce greater reductions.

3. Shell-model calculations

We now present our results for δC2 based on the extensions
of the shell-model spaces mentioned at the end of Sec. III A1.
In addition to adding the core orbitals mentioned there,
however, in some cases we have also been able to make use of
more recent effective interactions that have become available
since our last work. Specifically, we used the following
interactions in the various mass regions of interest: In the p
shell, we used the Cohen-Kurath interactions [21] and the more
recent PWBT interaction of Warburton and Brown [22]. In the
s, d shell, besides the universal interaction of Wildenthal [23],
we employed two new versions, USD-A and USD-B, of Brown
and Richter [24]. In the pf shell, we used the KB3 interaction
of Kuo-Brown [25] as modified by Poves and Zuker [26],
the FPMI3 interaction of Richter and Brown [27], and the
more recent GXPF1 interaction of Honma et al. [28,29]. For
cross-shell interactions between the major shells, we used the
interaction of Millener and Kurath [30]. Note that in many
cases we found it necessary to introduce some truncations
in the original model space in order to keep the calculations
tractible.

We made calculations for all 20 superallowed transitions
considered in our earlier work [1,4], and for each we calculated
δC2 in the four methods, I–IV, described in Sec. III A2 and
with the several interactions listed in the previous paragraph.
In Table II, we record only one sample result for δI

C2, δ
II
C2, δ

III
C2,

and δIV
C2 for each nucleus listed. However, our “adopted δC2”

values result from our assessment of all multiple-parentage
calculations made for each decay, not just those shown in
the previous three columns. The uncertainty assigned to each
adopted value reflects the uncertainty in the radius of the
Saxon-Woods potential (resulting from an uncertainty in the
nuclear rms radius to which it is adjusted), the spread of
results obtained with different shell-model interactions, and
the spread of results obtained with the different procedures
labeled II, III, and IV in the table.

B. Isospin-mixing correction δC1

The second (and smaller) contribution to δC is the isospin-
mixing correction δC1. For its evaluation, the radial integrals

025501-6

δC1	=	0.030(10)	%	
δC2	=	0.280(15)	%	

26mAl
δC2:	shell	model	based	on	Saxon-Woods	radial	func-ons

• nuclear	charge	radius	enters	here
• oDen	not	known	experimentally	(e.g.	26mAl)
⇒extrapolaKon	based	on	stable	isotopes	(and	inflated	uncertainKes)

I. S. Towner private communications (2016). 

m
ot

iv
at

io
n 

II

proposed	measurement	will	place								on	solid	experimental	grounds
and	reduce	uncertainty	on	δC2

hr2i



INTC	mee?ng,	Feb	3,	2016

charge	radii	&	the	island	of	inversion

8

m
ot

iv
at

io
n 

III

Author's personal copy

208 P. Himpe et al. / Physics Letters B 658 (2008) 203–208

Fig. 5. Isotopes in and near the island of inversion: intruder dominant ground
states (red), normal ground states (yellow) and mixed configurations (rose).
Isotopes with yet unknown configurations are in light grey and the unknown
isotopes from the initially defined island in dark grey. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this Letter.)

netic moment µ = (+)2.156(16)µN is much larger than the
values calculated with the most recent large-scale shell model
interactions. This has two causes: the magnetic moment is ex-
tremely sensitive to mixing with intruder configurations in the
wave function (related to the N = 20 shell gap), but also to the
occupation of the ν1p3/2 orbital (related to the N = 28 shell
gap). Contrary to earlier studies suggesting that Al isotopes
have a normal ground state across the N = 20 region, this result
establishes a large mixing of at least 50% of intruder configura-
tions in the 34Al ground state. Furthermore, the subtle interplay
between the effect of reduced N = 20 and N = 28 shell gaps at
Z = 13 observed through the g factor, will provide a severe test
for a further improved effective shell model interaction. This is
indispensable information, that cannot be deduced from bind-
ing energies or from decay and level scheme studies.
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33,34Al:	intruder	admixtures	
in	the	ground	state	(μ	and	Q)

was completed by measurements with the new method on
31Mg (! 2" 105 ions=s) and 21Mg (!5"104 ions=s).
Degrader plates were used in the latter case [30] to shield
the detectors from the contaminant beam, whose ! decay
is much less energetic. By recording the hyperfine structure
with left-hand and right-hand circular laser polarization
and fitting both simultaneously, one is able to extract
information on the magnetic field and the laser power in
a self-consistent way. Apart from the moments, radii, and
spins the new method is also sensitive to the value and sign
of the integral !-decay asymmetry parameter. This quan-
tity can be used, for instance, to aid spin-parity assign-
ments in the daughter nuclei. Such a discussion, however,
as well as a detailed description of the numerical approach
extend beyond the scope of this Letter and will be pub-
lished separately.

Typical spectra of all studied isotopes are shown in
Fig. 1. Changes in mean square charge radii are extracted
from the isotope shifts through a King-plot procedure using
the radii [31] of the stable isotopes. The corresponding
specific mass shift and the electronic factor of the transition
are in excellent agreement with theory [32]. All results are
presented in Table I. The systematic errors of the isotope
shifts correspond to a 10#4 relative uncertainty of the beam
energy [28]. These do not influence the extracted radii as
they only affect the mass shifts obtained from the King plot
[33,34]. This means the accuracy of the radii differences
and the absolute radii is essentially determined by the
uncertainties of the reference radii. Hence, the correspond-
ing systematic errors are correlated and play no role for the
physics discussion.

The total rms charge radii of magnesium spanning the
complete sd shell are plotted in Fig. 2(a). Clearly, the
experimental points lie on three separate slopes signifying
three distinct modes of the nuclear size along the chain.
This is also evident in Fig. 2(b), which in essence repre-
sents the derivative. The physical meaning of the differen-
tial plot is an increase of the mean square charge radius by
the addition of two neutrons. There is a striking correspon-
dence between the data points and the neutron sd orbitals.
Beginning with 21Mg the charge distribution is compressed
with filling the d5=2 orbital up to

26Mg (N ¼ 14). A similar
effect has also been observed in neon [23,34]. The addition
of two neutrons on either s1=2 or d3=2 in the range 28-30Mg
results in a steady increase of the radius represented by the
middle level in Fig. 2(b). Finally, 31Mg and 32Mg define a
third level, which is associated with the island of inversion
and in terms of the shell structure would correspond to a
cross-shell excitation of two neutrons [12,21]. In 27Mg one
of the neutrons added to 25Mg fills the last d5=2 hole and the
other populates the s1=2 subshell, resulting in the inter-
mediate position in Fig. 2(b). Already from a general
perspective three important conclusions can be made.
First, an island ‘‘of inversion’’ does exist in terms of the
rms charge radius and has a well-defined border between

30Mg and 31Mg, as previously anticipated [12,35]. Second,
the odd-even staggering is well pronounced except for
31Mg. This indicates a structural change with a prominent
effect already in the first isotope of the island. Third, the
charge (proton) distribution is strongly correlated with the
neutron shell structure.
The role of the quadrupole deformation in the above

observations needs to be disentangled from other effects
that may contribute. In the mean-field picture the addition
of neutrons increases the radius of the mean field for
protons, causing the proton distribution to expand. More
neutrons also support more binding for protons as the
proton-neutron interaction is more attractive than the
proton-proton interaction, thus causing the charge distri-
bution to shrink. Alternatively, in the spherical shell model
changing trends of the charge radii could be considered as
changing contributions from the two major oscillator shells
involved, which have different radii and may be associated
with different polarizations of the proton distribution. In an
attempt to understand these mechanisms we employ the

FIG. 2 (color online). Experimental rms charge radii of mag-
nesium (a) compared to theory and differential mean square radii
(b). The correlated systematic uncertainties (Table I) are not
depicted. Dotted lines and boxes have an illustrative purpose
only.

PRL 108, 042504 (2012) P HY S I CA L R EV I EW LE T T E R S
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D. T. Yordanov et al., Phys. Rev. Lett. 108, 042504 (2012)

Mg	isotopic	chain	

signature	of	admixture	in	charge	radius	of	33Al?
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J. Papuga et al., PRL 110, 172503 (2013) 

Measure in a model-independent way 4 properties of an exotic isotope/isomer: 
 - the nuclear spin I 
 - the magnetic dipole moment P�
 - the electric quadrupole moment Q (if electronic and nuclear spin J,I>1/2) 
 - the isotope shift Æ nuclear charge radius 
by resonant excitation of hyperfine transitions in an atom or ion. 
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Fig. 1. Diagram of the segmented radiofrequency quadrupole
trap.

due to the versatility and universality of these devices,
which provide beams of low emittance and the option
of a pulsed release of ions. Examples of facilities which
have such an apparatus in operation include ISOLTRAP
at ISOLDE [5], the IGISOL facility in Jyväskylä [6] and
LEBIT at MSU [7].

At ISOLDE, a general-purpose linear Paul trap,
ISCOOL, has recently been developed and commissioned
for operation at the focal plane of the high-resolution sep-
arator (HRS). The purpose of the device is to deliver ion
beams with an expected transverse emittance of less than
3π mm · mrad at 60 keV and a low-energy spread (< 1 eV),
either continuously or in bunches with a well-defined tem-
poral structure.

The device consists of injection electrodes, a quadru-
pole structure for trapping the ions in the transverse
plane, and extraction electrodes. The trap is realized with
four rods coupled pairwise. The applied voltage to a pair
of electrodes is Vrf cos (Ωt). The same voltage is applied
to the alternate pair, but with an opposing polarity. The
radiofrequency field applied to the quadrupole is used to
confine the ion cloud in the radial direction. The rods are
surrounded by 25 segmented DC electrodes. The struc-
ture is maintained typically 100V below the high voltage
of the HRS. The gas, helium, fills the quadrupole volume.
A pressure of about 0.1mbar is used to slow and cool the
ions via thermal collisions. A differential pumping system
is used to keep the pressure on either side of the device
below 10−7 mbar. The DC field, which is independently
applied to each segment permits the creation of a poten-
tial gradient of 0.2V/cm in order to guide the ions to the
trap exit. The ions can be extracted as a continuous flux
or they can be accumulated and released in short bunches,
as shown by fig. 1.

A more detailed description of this device together
with its design specifications can be found in [8,9]. Prior
to the on-line commissioning phase, off-line tests were un-
dertaken with ISCOOL in a dedicated test bench, under
conditions similar to that found at the HRS. The results of
these tests, which investigated the transmission in contin-
uous mode as well as the extracted emittance at 30 keV
for a surface alkali ion source are reported in [10]. This

Fig. 2. Collinear laser spectroscopy setup (COLLAPS) at
ISOLDE. 1) Single charged ions; 2) laser beam; 3) electrostatic
deflection plates; 4) post-acceleration electrodes; 5) charge
exchange cell (CEC); 6) photomultiplier tubes; 7) brewster
window.

work reports on the first use of ISCOOL for collinear laser
spectroscopy with fast beams at ISOLDE.

3 Collinear laser spectroscopy of 39,44,46K and
85Rb

Tests were made on stable 39K and on radioactive 44,46K,
produced from a tantalum HRS target. In addition, stable
85Rb was studied. For the potassium ions, ISCOOL oper-
ated with rf amplitude Vrf = 280V and Ω = 520 kHz,
whereas for rubidium, Vrf = 270V and Ω = 450 kHz.
The ion beam from ISCOOL were steered to the collinear
laser spectroscopy beam line, COLLAPS [11–13]. Figure 2
shows a simplified scheme of the setup. The ions were neu-
tralized by passage through a charge exchange cell filled
with hot potassium vapour, which was placed before the
light collection region. The neutral beam was overlapped
with a collinear Ti:Sa laser beam, co-propagating with the
ion beam direction. The high velocity of the atom beam
acted to compress the forward velocity spread, which al-
lowed high-resolution spectroscopy to be performed. A
tuning potential on the charge exchange cell was applied
to Doppler shift the laser light (in the rest frame to the
atom) into resonance. The transitions chosen were the D2

lines both for potassium (766 nm) and rubidium (780 nm).
The atoms in the interaction region were resonantly ex-
cited with the laser and the subsequent fluorescence pho-
tons were counted with two red-sensitive photomultiplier
tubes as the tuning voltage was scanned.

4 Laser and ion beam overlap

Two removable apertures were placed in the COLLAPS
beam line to tune the ion beam. A 1mm diameter aper-
ture was used to maximise the overlap of the ion and laser
beams in the vicinity of the photon detection region. The
narrow waist minimised the laser power required, with a
commensurate reduction of the scattered laser light. A
second aperture, with a 4mm diameter and placed down-
stream the detection region, was used to ensure a slow

PMTs
charge
exchange
cell

post-accelera-on	
electrodes

neutral	atom	beam

ion	beam	

laser	beam

standard	COLLAPS	setup	for	atoms:

in mean-square charge radii �hr2i are extracted according to

�⌫A,A

0
= M

A0 � A

A · A0 + F �hr2iA,A

0
, (1)

where M and F are mass and field shift factor, respectively. For 26g,26mAl, collinear
laser spectroscopy allows the direct measurements of the isomer shift since the hyperfine
structure centroids for both the ground state and the isomer can be determined in a single
hyperfine spectrum. The advantage of this direct determination was clearly demonstrated
for 38K [1] where a previous indirect determination of the isomer shift by the combination
of two data sets, led to large error bars and as a consequence, to the wrong conclusion on
the relative size of the ground state and isomer.
Due to a lack of suitable transitions in Al ions, spectroscopy is performed on atoms which
are formed when Al ions delivered by ISOLDE are neutralized in COLLAPS’ charge
exchange cell which is filled with Na vapour. Based upon our previous work (IS457) on
Ga atoms, which have very similar structure and transitions, we expect that the two states
of the 2P o doublet are populated roughly equally in the charge exchange. Several strong
transitions can be considered (compare also with Fig. 4a). We exclude the transitions
to the 2D doublet at 308 nm and 309 nm, respectively, since the two 2D states are
very close in energy (�E ⇡ 0.2 meV) resulting in mixing of the two transitions [27].
This could lead to anomalies in the optical isotope shifts in analogy to what has been
observed in Sm isotopes [28]. Such complications are naturally avoided in the transitions
to the 2S1/2 singlet at 396 nm and 394 nm, respectively. Due to the finite probability
density of the s-electron at the nuclear site, these transitions are also more sensitive to
the nuclear charge radius. The 2P o

3/2 ! 2S1/2 transition with an Einstein coe�cient

of A = 1.0 · 108/s is stronger than 2P o

1/2 ! 2S1/2 (A = 5.1 · 107/s). Moreover, it is
also sensitive to the quadrupole moments of the investigated Al isotopes (not known for
24,29,30Al) and is hence the preferred transition. Laser light at this wavelength can be
produced by frequency doubling 792 nm provided by a Ti:Sa laser.
As mentioned before, the transition dependent mass and field shift M and F are required
to extract the changes in the mean-square charge radii �hr2iA,A

0
from the measured isotope

shift. Corresponding atomic-physics calculations of M and F for the 2P o

3/2 !2 S1/2

transition are currently underway [29]. Finally, the charge radii of the studied Al isotopes
can be determined by comparing �hr2iA,A

0
to the root-mean-square charge radius of 27Al

[15], which is known from muonic-atom and electron-scattering measurements.

3 Beam time request

Following our science motivation, we request ISOLDE beams of 24�33Al (see Tab. 1).
27Al will serve as the reference throughout the entire measurement. Two shifts of stable
27Al beam are requested for setup and confirmation of the spectroscopic scheme prior to
the measurements of radioactive nuclides. Operation and use of HRS and the cooler and
buncher ISCOOL will be required from the beginning. Moreover, RILIS will be essential
to increase the yields of the Al isotopes.
To date, all yields for Al isotopes (see Fig. 4b) listed in the ISOLDE yield database as well

7

mass	and	field	shie	factors
from	atomic	physics	calcula?on
calculaRons	ongoing	within	collaboraRon

isotope	shia

difference	in	
rms	charge	radii

L. Filippin and M. Godefroid
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3s23d 2D3/2
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396 nm

�E ⇡ 0.2 meV

394 nm 30
8 
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nm

mixing	of	transi?ons	
⇒	anomalies	in	the	op?cal	isotope	shies

more	sensi?ve	to	charge	radii

Preferred	transi-on:	396	nm
• larger	transi?on	strength
• sensi?ve	to	quadrupole	moments	(not	known	for	24,29,30Al)
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Table 1: List of Al isotopes to be studied in this proposal. Each nuclide is listed with
half-life, magnetic moment µ, electric quadrupole moment Q, yields at ISOLDE, and the
requested shifts. All yields are based on UCx targets and RILIS as listed in the ISOLDE
yield database. µ and Q from [32].

nuclide spinparity half-life µ [µ
N

] Q [b] yield [ions/µC] shifts (target)
24Al 4+ 2.1 s 2.99(9) ? 4.5E+03 a 4*
25Al 5/2+ 7.2 s 3.6455(12) 0.24(2) not listed 2
26Al 5+ 7.2E+5 y 2.804(4) 0.27(3) not listed 2

26mAl 0+ 6.3 s - - 6.8E+04 2
27Al 5/2+ stable 3.6415069(7) 0.1466
28Al 3+ 2.2 min 3.242(5) 0.175(14) 4.0E+07 1
29Al 5/2+ 6.6 min ? ? 4.5E+07 1
30Al 3+ 3.6 s 3.010(7) ? 2.5E+06 1
31Al 5/2+ 640 ms 3.830(5) 0.1340(16) 2.5E+05 2
32Al 1+ 33 ms 1.959(9) 0.024(2) not listed 2
33Al 5/2+ 42 ms 4.088(5) 0.132(16) 1 - 4E4b 4

aYield measured at ISOLDE-SC with a UCx target; see text for details
bEstimate based on recent yield measurements on 34Al [31], which are not listed in the yield database.

[4] I. Bentley, et al. Relation between Wigner energy and proton-neutron pairing. Phys.
Rev. C, 88:014322, 2013.

[5] P. Fröbrich. Enhancement of deuteron transfer reactions by neutron-proton pairing
correlations. Physics Letters B, 37(4):338 – 340, 1971.

[6] A.O. Macchiavelli, et al. The 56Ni(3He,p) Reaction and the Question of T = 0, T =
1 Pairing in N = Z Nuclei. ANL Physics Division Annual Report, page 21, 2002.

[7] F.C. Charlwood, et al. Ground state properties of manganese isotopes across the
shell closure. Physics Letters B, 690(4):346 – 351, 2010.

[8] B. Cheal. private communication.

[9] J. C. Hardy, et al. Superallowed 0+ ! 0+ nuclear � decays: 2014 critical survey,
with precise results for V

ud

and CKM unitarity. Phys. Rev. C, 91:025501, 2015.

[10] R. J. Dowdall, et al. V
us

from ⇡ and K decay constants in full lattice QCD with
physical u, d, s, and c quarks. Phys. Rev. D, 88:074504, 2013.

[11] A. Bazavov, et al. Determination of |V
us

| from a Lattice QCD Calculation of the
K ! ⇡`⌫ Semileptonic Form Factor with Physical Quark Masses. Phys. Rev. Lett.,
112:112001, 2014.

[12] A. Bazavov, et al. Charmed and light pseudoscalar meson decay constants from
four-flavor lattice QCD with physical light quarks. Phys. Rev. D, 90:074509, 2014.

9

21	shiSs:	(2	for	setup	and	19	for	online	measurements	of	24−33Al	split	into	two	separate	beamRmes)
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24Al	yield	at	ISOLDE-PSB	likely	lower:	calculated	es?mate	9E2	/μC	

⇒	request	yield	test	with	UCx	at	the	end	of	first	run

⇒	2nd	run	may	require	lighter	target	and/or	LIST	for	suppression	of	Na	contamina?on

J. P. Ramos and T. Stora, private communications, 2016. 

21	shiSs:	(2	for	setup	and	19	for	online	measurements	of	24−33Al	split	into	two	separate	beamRmes)
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• proposal	to	measure	charge	radii	of	24−33Al	with	laser	
spectroscopy	at	COLLAPS

• 3	science	mo-va-ons:	
• study	np	pairing	in	self-conjugate	nucleus	26m,26Al
‣ in	analogy	to	38m,38K
‣ to	provide	more	global	picture	on	the	size	of	the	phenomenon
‣ requires	measurement	of	odd-even	staggering	of	r	along	isotopic	chain

• superallowed	β	decays,	Vud	&	26mAl’s	charge	radius
‣ provide	accurate&precise	input	parameter	for	calcula?on	of	ISB	correc?ons
‣ currently	based	on	extrapola?on	of	stable	isotopes	

• Al	charge	radii	at	the	border	of	the	island	of	version
• request	21	shias	
‣ 2	for	setup
‣ 19	for	online	measurements	of	24−33Al
‣ split	in	2	beam?mes
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Laser spectroscopic studies along the Al isotopic chain and the
isomer-shift of the self-conjugate 26Al nucleus

January 11, 2016

H. Heylen1, S. Malbrunot-Ettenauer2, M.L. Bissell3, K. Blaum4, B. Cheal5, L. Filippin6,
R.F. Garcia Ruiz3, W. Gins1, M. Godefroid6, C. Gorges7, S. Kaufmann7, Á. Koszorús1,
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Abstract: We propose to measure the isomer shift in the self-conjugate 26Al
(N = Z = 13) nucleus along with the isotope shifts of 24�33Al using bunched-beam

collinear laser spectroscopy at the COLLAPS beam line at ISOLDE. These isomer and
isotope shifts allow the extraction of precise mean-square charge radii, in particular the
di↵erence in charge radius between the I = 5+, T = 0 ground state and I = 0+, T = 1

isomer in 26Al. This charge radius di↵erence, in comparison with the odd-even
staggering in the Al-chain, is an excellent probe to study proton-neutron pairing

correlations, as was previously illustrated for 38
19K19 [1]. Furthermore, accurate knowledge

of the mean-square charge radius in 26mAl is essential to reliably calculate its
isospin-symmetry breaking correction which is important to extract the CKM matrix
element Vud from the 0+ ! 0+ superallowed �-decay data. Finally, the charge radii of
the neutron-rich Al isotopes will probe the development of deformation at the border of

the island of inversion.

Requested shifts: 21 shifts (split into 2 runs over 1 year)
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