Jets and topo-clusters with pile-up A brief synopsis of dealing with jets and topo-clusters in events with pile-up

David W. Miller

Stanford University SLAC National Accelerator Laboratory

February 3, 2009

D.W. Miller (Stanford, SLAC)

Introduction and reminders

Aims and content of this synopsis

Everything and more in this TWiki page: JetsWithPileup (link)

We are making great progress and it's important to do it right

Many more people have started looking at the effects of pile-up on jets, jet constituents, and other physics objects in ATLAS. This is also in part do to the **validated** and **centralized** production of pile-up datasets, which has started in earnest.

Several things to keep in mind:

- We have a calorimeter (LAr) which has the issue of pile-up and how to deal with it built into in it's very design
- This design renders most the *average* pile-up component as noise
- The topo-clustering technique is meant *not only* to represent the particle energy depositions better but also to suppress such noise
- We must therefore estimate the level of this noise correctly in order to maintain efficient and accurate topo-clustering, and indeed for jet reconstruction generally

General ideas and comments

Some details and background that I will assume

Everything and more in this TWiki page: JetsWithPileup (link)

Several things to keep in mind:

- Most of this discussion pertains mostly or only to simulated pile-up
- A lot of work is ongoing and making huge steps to provide the full capability to overlay real pile-up data, taken from minimum bias triggers, to our simulated signals.
 - OverlayValidation for ID (id: atlas; pw: atlas08)
 - LArPileUpRandomEvent
- **That** is the real goal...but for now, we are learning a lot from the simulation anyway.
- The LAr calorimeter is optimized for 25ns bunch spacing, so pay attention to the bunch spacing used in your sample!
 - this topic is *very* difficult to deal with...more people should look into this.
- The number of overlaid minimum bias is Poisson distributed...fluctuations are important
- Get used to looking in AMI for information about datasets

D.W. Miller (Stanford, SLAC)

Making sure noise calculations take pile-up into account

Everything and more in this TWiki page: JetsWithPileup (link)

- Mow your dataset:
 - It is good practice to always check the conditions under which your data were produced/collected (this will become even more important with real data)
 - Use AMI!!!
 - Check the jobConfig for the digitized input to your dataset
 - If you see something like Lumi010DigitConfig_75ns.py or Lumi020DigitConfig.py then the sample was digitized with pile-up
 - Real data overlay is not yet in production, but you can expect something similar will apply there
 - From the file Lumi020DigitConfig.py you can obtain the assumed bunch spacing and number of collisions simulated
 - digitConfig.bunchSpacing = 25 and digitConfig.pileupCollisions = 4.6 for example
- Set the options in your re-reconstruction job:
 - from AthenaCommon.BeamFlags import jobproperties
 - jobproperties.Beam.numberOfCollisions = 4.6
 - jobproperties.Beam.bunchSpacing = 25
- Verify the options worked:
 - You'll see something like this:
 - ToolSvc.CaloNoiseToolDefault INFO N events of Minimum BiasSLAG

D.W. Miller (Stanford, SLAC)

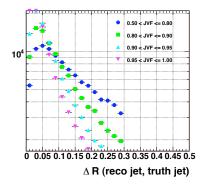
Setting the luminosity

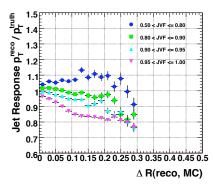
Re-making topo-clusters

Everything and more in this TWiki page: JetsWithPileup (link) There are actually instructions on the JetsWithPileup (link) page. This is what you need to do to re-make them from ESD

doCaloTopoCluster = True from CaloRec.CaloRecFlags import jobproperties jobproperties.CaloRecFlags.Enabled.unlock() jobproperties.CaloRecFlags.Enabled = True jobproperties.CaloRecFlags.Enabled.lock() jobproperties.CaloRecFlags.doCaloTopoCluster.unlock() jobproperties.CaloRecFlags.doCaloTopoCluster = True jobproperties.CaloRecFlags.doCaloTopoCluster.lock()

from AthenaCommon.BeamFlags import jobproperties
jobproperties.Beam.numberOfCollisions = 4.6
jobproperties.Beam.bunchSpacing = 25


include ("RecExCommon/RecExCommon_topOptions.py")


D.W. Miller (Stanford, SLAC)

Setting the luminosity

Truth matching in events with pile-up A follow-up to David's talk

Angular resolution vs. pile-up contribution

Jet response vs. matching radius

D.W. Miller (Stanford, SLAC)