Puzzles in low-energy QCD

H. Leutwyler University of Bern

Workshop on Hadronic Contributions to New-Physics Searches Puerto de la Cruz, Tenerife, Spain, 26-30 Sept., 2016

- Many of the quantities of interest at the precision frontier of particle physics require a good understanding of the strong interaction at low energies.
- In this context, the lightest hadrons are the most important

$$\pi^+$$
 π^0 π^-

• It is essential that we know why the pions are so light. This understanding relies on symmetry.

- Heisenberg 1932: strong interaction is invariant under isospin rotations this is why $M_p \simeq M_n$.
- \Rightarrow Mass difference must be due to the e.m. interaction.
 - Puzzle: e.m. field around the proton is stronger, makes the proton heavier than the neutron.
 - Numerous unsuccessful attempts at solving this puzzle.
 - If QCD describes the strong interaction correctly, then
 m_u must be very different from *m_d*.

 $m_u/m_d \simeq 0.67, \ m_s/m_d \simeq 22.5$ first crude estimate

- $m_u/m_d \simeq 0.67, \ m_s/m_d \simeq 22.5$ first crude estimate 1975
- Masses of the pseudoscalar mesons confirm the picture: $M_{K^+} < M_{K^0}$ also requires a contribution due to $m_u < m_d$ that is larger than the e.m. self-energy difference $m_u/m_d \simeq 0.56$, $m_s/m_d \simeq 20.1$ Weinberg 1977
- Current lattice estimates $m_u/m_d = 0.46 \pm 0.03$, $m_s/m_d = 20.0 \pm 0.4$

FLAG, arXiv:1607.00299

Chiral symmetry

- Since *m_u* is very different from *m_d*: how come that isospin is a nearly perfect symmetry of the strong interaction ?
- QCD explains this very neatly: for yet unknown reasons, it so happens that m_u and m_d are very small.
- If *m_u* and *m_d* are set equal to zero ⇒ QCD becomes invariant under independent flavour rotations of the right- and left-handed *u*, *d*-fields.
- Symmetry group: $SU(2)_R \times SU(2)_L$
- This symmetry was discovered before QCD: Nambu 1960.
 - strong interaction has an approximate chiral symmetry
 - chiral symmetry is hidden, spontaneously broken
 - spontaneous symmetry breakdown generates massless bosons
 - the pions are the massless bosons of chiral symmetry
 - are not exactly massless, because the symmetry is not exact

Mass of the pion

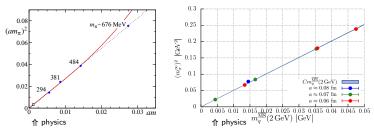
- For $m_u = m_d = 0$ the pions are massless (Nambu-Goldstone bosons of an exact, spontaneously broken symmetry).
- For small values of m_u, m_d : M_π^2 is proportional to $m_u + m_d$:

- Only $m_u + m_d$ counts.
- F_{π} is known from $\pi^+ \to \mu^+ \nu$, but $|\langle \mathbf{0} | \, \bar{u} u \, | \mathbf{0} \rangle| = ?$ Non-perturbative method required to calculate $|\langle \mathbf{0} | \, \bar{u} u \, | \mathbf{0} \rangle|$.

Lattice results for M_{π}

Lüscher Lattice conference 2005

• GMOR formula is beautifully confirmed on the lattice: can determine M_{π} as a function of $m_{\mu} = m_d = m$.



RQCD collaboration, arXiv:1603.00827

• Proportionality of M_{π}^2 to m_{ud} holds out to about $m_{ud} \simeq 10 \times \text{physical value of } \frac{1}{2}(m_u + m_d)$. Dürr, arXiv:1412.6434

Corrections to the GMOR relation

- Switch the electroweak interactions off, consider pure QCD. $M_{\pi} = M_{\pi}(\Lambda_{\text{QCD}}, m_u, m_d, m_s, m_c, m_b, m_t)$
- Chiral expansion, chiral perturbation theory (χPT) : expand M_{π} in powers of m_u, m_d . The formula of GMOR gives the leading term: $M^2 \equiv (m_u + m_d)B$ $B = \lim_{m_u, m_d \to 0} \frac{|\langle 0| \ \bar{u}u \ |0\rangle|}{F_{\perp}^2}$

B is independent of m_u, m_d .

• χ PT shows that the next term in the expansion is given by $M_{\pi}^2 = M^2 \left\{ 1 - \frac{M^2}{2(4\pi F_{\pi})^2} \bar{\ell}_3 + O(M^4) \right\}$ $\bar{\ell}_3 = \ln \frac{\Lambda_3^2}{M^2}$ depends logarithmically on M

$$M_{\pi}^{2} = M^{2} \left\{ 1 - \frac{M^{2}}{2(4\pi F_{\pi})^{2}} \bar{\ell}_{3} + O(M^{4}) \right\} \quad \bar{\ell}_{3} = \ln \frac{\Lambda_{3}^{2}}{M^{2}}$$

• Chiral symmetry does not determine the scale Λ_3 . Lattice calculations reduced the uncertainty very significantly. Review of Bijnens and Ecker: arXiv:1405.6488

$$\bar{\ell}_3 = 3.0 \pm 0.8 \leftrightarrow \Lambda_3 \simeq 600$$
 MeV.

$$\Rightarrow$$
 Correction in M_{π} is tiny: $\frac{M_{\pi}^2}{2(4\pi F_{\pi})^2} \bar{\ell}_3 \simeq 0.024$

Not a surprize: *m_u*, *m_d* are small, of the order of a few MeV.
 SU(2)×SU(2) should be a nearly perfect symmetry !

Why is the strong interaction nearly isospin invariant ?

- m_u, m_d small \Rightarrow SU(2)×SU(2) a nearly perfect symmetry.
- Isospin is a subgroup of $SU(2) \times SU(2)$.
- \Rightarrow Isospin is a nearly perfect symmetry.

The strong interaction is nearly invariant under isospin rotations because m_u, m_d are small.

- But: the fact that SU(2)×SU(2) symmetry is broken is clearly seen: M_π ≠ 0
 Why is the breaking of isospin symmetry so well hidden ? Why is M_{π⁰} nearly equal to M_{π⁺} ?
- The Nambu-Goldstone bosons are shielded from isospin breaking: leading term in L_{eff} only knows about m_u + m_d.
 ⇒ Expansion of M²_{π⁺} M²_{π⁰} in powers of m_u, m_d does not contain a term ∝ m_u m_d. Leading contribution is of order (m_u m_d)² ⇒ in QCD, M_{π⁺} M_{π⁰} is tiny.

Mass of the kaon

- Kaons are not protected from isospin breaking, are also NG bosons, become massless if *m_s* is sent to zero
- π^+ : $u\bar{d}$ K^+ : $u\bar{s}$ K^0 : $d\bar{s}$ Leading terms in the expansion in powers of m_u, m_d, m_s : $M_{\pi^+}^2 = (m_u + m_d)B$ $M_{K^+}^2 = (m_u + m_s)B$ $M_{K^0}^2 = (m_d + m_s)B \Rightarrow M_{K^+}^2 - M_{K^0}^2 = (m_u - m_d)B$ • B drops out in the ratios
- $\Rightarrow \frac{M_{K^+}^2}{M_{\pi^+}^2} = \frac{m_u + m_s}{m_u + m_d}$ up to higher order contributions

• Masses of the NG bosons are very sensitive to m_u, m_d, m_s

- m_u, m_d, m_s break chiral symmetry
- \Rightarrow Explains why laws of nature contain approximate symmetries.
 - M_{π} , M_{K} measure the strength of chiral symmetry breaking.

Convergence of the chiral perturbation series ?

• $M_K \gg M_\pi$

- $\Rightarrow m_s$ is much larger than m_u, m_d .
- \Rightarrow SU(3)×SU(3) broken more strongly than SU(2)×SU(2).
- \Rightarrow Expansion in m_s converges more slowly.
 - Chiral expansion is not an ordinary Taylor series: Leading order: Nambu-Goldstone bosons are massless.
- \Rightarrow Infrared singularities at next-to-leading order and beyond. Strength of singularities determined by leading terms in \mathcal{L}_{eff} .
 - Typical size of the corrections from higher orders: unless the expansion contains strong infrared singularities
 - $SU(2) \times SU(2)$, isospin: a few percent
 - SU(3)×SU(3), eightfold way: 20 percent
 - ∃ quantities where the higher order contributions exceed the typical size, but in all cases I know, the reason is well-understood: infrared singularities with large coefficients.

- If u and d are given the same mass m_{ud} and e = 0, there are three degenerate isospin multiplets: M_{π}, M_{K}, M_{η}
- At leading order of the chiral expansion, the masses obey the Gell-Mann-Okubo formula $\Rightarrow M_{\eta}$ determined by M_{K}, M_{π} $M_{\eta}^{2} = \frac{1}{3}(4M_{K}^{2} - M_{\pi}^{2})$ predicted: $M_{\eta} = 566$ MeV, observed $M_{\eta} = 548$ MeV \Rightarrow Correction amounts to 3%, surprisingly small.
 - The relative size of M_K and M_{π} is determined by the relative size of m_{ud} and m_{e}

$$\frac{M_K^2}{M_\pi^2} = \frac{m_{ud} + m_s}{2m_{ud}}$$

$$\frac{M_K^2}{M_\pi^2} = \frac{m_{ud} + m_s}{2m_{ud}} \qquad \text{valid at LO}$$

How large are the contributions from the higher orders ?
 Denote these by Δ_M:
 M² m + m

$$\frac{M_{K}}{M_{\pi}^{2}}=\frac{m_{ud}+m_{s}}{2m_{ud}}(1+\Delta_{M})$$

- Lattice result for quark masses: $m_s/m_{ud} = 27.3(3)$ FLAG $\Delta_M = -0.05(1)$
- \Rightarrow Corrections are remarkably small also here.

• More typical case:
$$\frac{F_{\kappa}}{F_{\pi}} = 1 + \Delta_F \quad \Delta_F = 0.193(3)$$
 FLAG

伺 ト く ヨ ト く ヨ ト

Effects from $m_u \neq m_d$

Two sources of isospin breaking: $m_u \neq m_d$ and e^2 . First discuss the symmetry breaking due to $m_u \neq m_d$

- As mentioned already, the vacuum shields the pions from isospin breaking within QCD.
- For the kaons, there is a low-energy theorem Gasser & L. 1985 $\frac{M_{K^0}^2 - M_{K^+}^2}{M_K^2 - M_{\pi}^2} \cdot \frac{M_{\pi}^2}{M_K^2} \bigg|_{\text{QCD}} = \frac{m_d^2 - m_u^2}{m_s^2 - m_{ud}^2} (1 + \delta_M)$

Similar to the one for M_K^2/M_{π}^2 , but there is a difference: δ_M is of NNLO, hence expected to be very small.

• For small quantities like δ_M , details matter. Identify M_{π}^2 , M_K^2 with the mean squared masses of the two multiplets and evaluate the e.m. self-energies of the neutral particles with the numbers quoted by FLAG.

→ □ → → □ →

Low-energy theorem for $M_{\kappa^0}^2 - M_{\kappa^+}^2$

• Recent lattice results:

	BMW	MILC
m_u/m_d	0.485(20)	0.455(13)
m_s/m_{ud}	27.53(22)	27.36(10)
δ_M	0.08(7)	-0.01(5)

Results agree within about 1 σ , are consistent with $\delta_M = 0$. \Rightarrow Low energy theorem is confirmed.

e.m. self-energies

- The e.m. self-energy of the pion obeys a low-energy theorem which neatly explains the magnitude of M_{π+} - M_{π0}. Das, Guralnik, Low, Mathur & Young 1967
- This theorem does not rely on the expansion in powers of m_s \Rightarrow Holds up to corrections of order $e^2 M_{\pi}^2$.
- Dashen theorem: at LO of the expansion in m_u, m_d, m_s : $M_{K^+}^2$ gets the same contribution from the e.m. interaction as $M_{\pi^+}^2$, while $M_{\pi^0}^2, M_{K^0}^2, M_{\bar{K}^0}^2, M_{\eta}^2$, do not get anything at all. $\Rightarrow (M_{K^+}^2 - M_{K^0}^2)_{_{\text{QED}}} = (M_{\pi^+}^2 - M_{\pi^0}^2)_{_{_{\text{QED}}}}$
 - Dashen theorem only holds at leading order of χ PT, denote the corrections of $O(m_u, m_d, m_s)$ by ϵ .

$$(M_{K^+}^2 - M_{K^0}^2)_{\text{QED}} = (M_{\pi^+}^2 - M_{\pi^0}^2)_{\text{QED}} \times (1 + \epsilon)$$

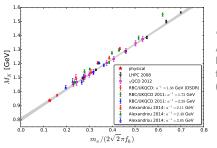
How large are the higher order contributions in this case ?

$$(M_{K^+}^2 - M_{K^0}^2)_{_{
m QED}} = (M_{\pi^+}^2 - M_{\pi^0}^2)_{_{
m QED}} \times (1 + \epsilon)$$

- Oven fresh lattice determinations: $\epsilon = 0.73(18)$ BMW arXiv:1604.07112 $\epsilon = 0.73(14)$ MILC arXiv:1606.01228
- \Rightarrow In the self-energies, the higher order effects are very large.
 - Why is that ? Does the semi-quantitative rule fail here ? Explanation was given long ago: Langacker and Pagels 1973

The self-energies contain very strong IR singularities at NLO. Contributions from these are as large as the LO term.

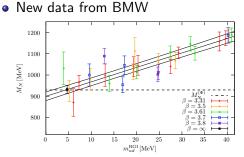
- M_N, M_π are determined by $\Lambda_{\text{QCD}}, m_u, m_d, \ldots, m_t$.
- Set *m_u* and *m_d* equal, common mass *m_{ud}*.
 Vary *m_{ud}*, keeping all other parameters fixed.
- ⇒ Values of M_N , M_π only depend on m_{ud} . Conversely, m_{ud} is determined by M_π .
- \Rightarrow Value of M_N determined by value of M_{π} .



'Ruler plot' of André Walker-Loud I thank Claude Bernard for providing this update (see PoS(CD15)004)

• Lattice results shown are roughly on a straight line: $M_N = M_0 + c M_{\pi}$

- Lattice results shown are roughly on a straight line: $M_N = M_0 + c M_{\pi}$
- In QCD, the Taylor series starts with $M_N = M_0 + c_1 M_\pi^2 + c_2 M_\pi^3 + c_3 M_\pi^4 \ell n(c_4 M_\pi) + O(M_\pi^5)$ A term proportional to M_π does not occur. $M_\pi^2 \propto m_{ud} \Rightarrow M_\pi \propto \sqrt{m_{ud}}$ \Rightarrow ruler fit is puzzling.



I thank Stephan Dürr for this plot (see arXiv:1510.08013)

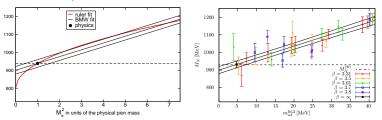
• In the range shown, the data are consistent with

$$M_N = M_0 + k_1 m_{ud}$$

 $M_{\pi}^2 = k_2 m_{ud}$
 \cdot BMW data are well described by

$$M_N = M_0 + c M_\pi^2$$

• Comparison of ruler fit with BMW fit



 \Rightarrow No evidence for a term linear in M_{π} .

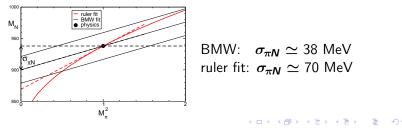
 Recent lattice results allow a determination of the *σ*-term matrix elements (focus on *σ*-term in isospin limit):

$$\sigma_{\pi N} = \frac{m_{ud}}{2M_N} \langle p | \bar{u}u + \bar{d}d | p \rangle$$
$$y = \frac{2 \langle p | \bar{s}s | p \rangle}{\langle p | \bar{u}u + \bar{d}d | p \rangle}$$

• Feynman-Hellman theorem:
$$\sigma_{\pi N} = m_{ud} \frac{\partial M_N}{\partial m_{ud}}\Big|_{\text{at physical } m_{ud}}$$

- Since the physical value of m_{ud} is small, it is in the region where $M_{\pi}^2 = k_2 m_{ud}$ holds to high accuracy. $\Rightarrow \sigma_{\pi N} = M_{\pi}^2 \frac{\partial M_N}{\partial M_{\pi}^2}\Big|_{\text{at physical } M_{\pi}}$
- ⇒ In the plot of M_N versus M_{π}^2 , the σ -term measures the slope at the physical point.

$$\Rightarrow \sigma_{\pi N} \simeq M_N - M_0$$



- y measures the size of $\langle p | \bar{s}s | p \rangle$. Violates the Okubo-Zweig-lizuka-rule, vanishes for $N_c \to \infty$.
- y is relevant for matrix element of the octet operator: $\sigma_0 = \frac{m_{ud}}{2M_N} \langle p | \bar{u}u + \bar{d}d - 2\bar{s}s | p \rangle = \sigma_{\pi N} (1 - y)$

Recent lattice results for $\sigma_{\pi N}$ and y

	$\sigma_{\pi N}$ (MeV)	у	archiv
BMW	38(3)(3)	0.20(8)(8)	1510.08013
χ QCD	44.4(3.2)(5.5)	0.058(6)(8)	1511.09089
ETM	$37.22(2.57)(^{+0.99}_{-0.63})$	0.075(16)	1601.01624
RQCD	35(6)	0.104(51)	1603.00827
blind average	38.2(2.0)	0.064(8)	

- Two independent methods are used:
 - Feynman-Hellman-theorem.
 - Direct determination of the σ -term matrix elements.
- The results are consistent with one another.
- \Rightarrow Data indicate a σ -term around 38 MeV and a small value of y.
 - Blind average over the four lattice results yields

 $\sigma_0 = 35.7(1.9) \text{ MeV}$

 $\Rightarrow \sigma_0$ smaller than $\sigma_{\pi N} = 38.2(2.0)$, but only slightly.

Low-energy theorem for σ_0

- For $m_u = m_d = m_s$, SU(3) is an exact symmetry of QCD.
- $\Rightarrow N, \Sigma, \Lambda, \Xi$ have the same mass.
 - $m_s m_{ud}$ removes the degeneracy, breaks SU(3) (disregard from isospin breaking, take $m_u = m_d$). Expand in powers of $m_s - m_{ud}$.
 - $2M_N + 2M_{\Xi} = 3M_{\Lambda} + M_{\Sigma}$ Gell-Mann-Okubo-formula valid to $O(m_s m_{ud})$. Works very well, also for the baryons.
- Mass splitting is determined by the matrix element $M_{\Sigma} + M_{\Xi} - 2M_{N} = \frac{m_{s} - m_{ud}}{2M_{N}} \langle p | \bar{u}u + \bar{d}d - 2\bar{s}s | p \rangle$ $\Rightarrow \text{ This leads to a low-energy theorem for } \sigma_{0}:$ $\sigma_{0} = \frac{m_{ud}}{m_{s} - m_{ud}} (M_{\Sigma} + M_{\Xi} - 2M_{N}) \left\{ 1 + O(m_{s} - m_{ud}) \right\}$

伺 と く ヨ と く ヨ と

Low-energy theorem for σ_0

•
$$\sigma_0 = \frac{m_{ud}}{m_s - m_{ud}} (M_{\Sigma} + M_{\Xi} - 2M_N) \left\{ 1 + O(m_s - m_{ud}) \right\}$$

Numerically, the leading term amounts to $\sigma_0\simeq$ 25 MeV.

• The NLO corrections were analyzed long ago. They do contain juicy infrared singularities. These amplify the corrections, increasing the value of σ_0 by about 10 MeV:

$$\sigma_0 = 35 \pm 5$$
 MeV Gasser 1981

 \Rightarrow The quoted lattice results beautifully confirm this prediction.

Low-energy theorems for πN scattering

- At low energies, the most important contribution to the πN scattering amplitude is the Born term, which is proportional to the square of the coupling constant $g_{\pi N}$.
- Goldberger-Treiman relation predicts the value of $g_{\pi N}$:

$$g_{\pi N}^{GT} = \frac{M_N}{F_{\pi}} g_A$$
Goldberger & Treiman 1957
Low-energy theorem:

$$g_{\pi N} = g_{\pi N}^{GT} \{1 + O(m_{ud})\}$$
Experiment: $g_A = 1.2723(23), F_{\pi} = 92.28(9)$ MeV
 \Rightarrow Prediction: $g_{\pi N}^{GT} = 12.95(3)$
Experiment: $g_{\pi N}^{exp} = 13.12(9)$ Hoferichter et al., arXiv:1510.06039
 $\Rightarrow g_{\pi N}^{exp}/g_{\pi N}^{GT} = 1.013(8)$ GT relation is obeyed very accurately.

Low-energy theorem for D^+

• The theorem concerns the isospin limit (QCD, $m_u = m_d$) and states that the leading term in the expansion of the isospin even πN scattering amplitude

$$\boldsymbol{\Sigma} = \boldsymbol{F}_{\pi}^2 \bar{\boldsymbol{D}}^+ \big|_{s=u, t=2M_{\pi}^2} \leftarrow \text{`Cheng-Dashen point'}$$

in powers of m_{ud} is given by $\sigma_{\pi N}$.

- ⇒ If the common mass of the two lightest quarks is turned off, both **Σ** and $\sigma_{\pi N}$ tend to 0 and the ratio **Σ**/ $\sigma_{\pi N}$ tends to 1.
 - Relying on the dispersive analysis of Höhler et al. (Karlsruhe-Helsinki collaboration), we obtained $\sigma_{\pi N} = 45 \text{ MeV}$ Gasser, L. & Sainio 1991
 - This was compatible with $\sigma_0 = \sigma_{\pi N}(1 y) = 35(5)$ MeV, provided a modest violation of the OZI-rule was allowed for: y = 0.2 Gasser, L. & Sainio 1991
 - The picture thus looked coherent, but the πN data showed serious inconsistencies. For this reason we were not able to attach meaningful uncertainties to the above estimates.

Roy-Steiner equations

- In the meantime, the lattice results have confirmed the value of σ_0 , but indicate that the violation of the OZI-rule is smaller \Rightarrow lattice values for $\sigma_{\pi N}$ cluster below 45 MeV.
- There is very significant progress in the dispersive analysis. Hoferichter, de Elvira, Kubis & Meissner, 2015, 2016
- Solutions of the Roy-Steiner equations for the πN scattering amplitude are now available. The extension from $\pi \pi$ to πN is a highly nontrivial achievement, because not all three channels involve the same physics: while the *s*- and *u*-channels carry the quantum numbers of πN , the t-channel concerns the transition $\pi \pi \leftrightarrow N \overline{N}$.
- Spin is a nontrivial complication: 4 amplitudes are needed.
 For ππ scattering a single amplitude suffices.

σ -term puzzle

- Outcome of the Roy-Steiner analysis: $\sigma_{\pi N} = 59.1(3.5) \text{ MeV}$ Hoferichter et al., arXiv:1506.04142
- I find this result very puzzling because of two prejudices:
 - SU(3) is a decent approximate symmetry, also for the matrix elements of the operator $\bar{q}\lambda^a q$ in the baryon octet.
 - Interval of Okubo, Zweig and lizuka is approximately valid.
 - If $\sigma_{\pi N}$ is above 50 MeV \Rightarrow at least one of these is wrong. The lattice results are consistent with both of them.
- Clash between two independent determinations of $\sigma_{\pi N}$:

Matrix elements of qq	$\pi {m N}$ scattering
Lattice	Roy-Steiner
38 MeV	59 MeV

σ -term puzzle

- The clash is not new many references deal with the subject. see for instance Pavan et al. 2002, Stahov et al. 2013, Matsinos & Rasche 2015
- New results accentuate the problem: Model dependence of the analysis is reduced. Uncertainty estimates have become small.
- Can the discrepancy be resolved with χ PT ?

Alarcon, Alvarez-Ruso, V. Bernard, de Elvira, Epelbaum, Gasparyan, Gegelia Geng, Hoferichter, Krebs, Kubis, Ledwig, Leinweber, Martin Camalich, Meißner, Meng, Oller, Ren, Shanahan, Siemens, Thomas, Vicente Vacas, Yao, Young

- A reliable lattice determination of the LECs relevant for the masses of the meson and baryon octets would be most welcome, but is not easy to achieve.
- The lattice results depend on extra parameters related to the regularization used. This may be the reason why the values of $\sigma_{\pi N}$ obtained by analyzing lattice data with χ PT differ from those found by the collaborations responsible for the data.

(recall comparison of ruler fit with BMW fit.)

- πN analysis relies on data taken in the world as it is.
- Lattice calculations can be done in a much simpler framework: QCD with $m_u = m_d$.
 - For $\sigma_{\pi N}$, 4 flavours should yield a very accurate result.
 - \Rightarrow Theory can be specified in terms of M_N, M_π, M_K, M_D .
 - Isospin limit of M_{π} is a matter of convention (fixes m_{ud}).
 - In view of $\sigma_{\pi N} \propto M_{\pi}^2$, the value $\sigma_{\pi N} \simeq 38$ MeV for $M_{\pi} = M_{\pi^0}$ increases by about 2.6 MeV if M_{π} is identified with M_{π^+} (convention usually adopted in πN scattering) small drop on a hot stone ...

Potential sources of error

- 1. πN data need to be corrected for isospin breaking effects.
- 2. CD point \notin physical region, extrapolation needed.

1. Isospin breaking

- The σ -term is small, hides behind Born term and $\Delta(1232)$.
- Beautiful experiments on level-shift and line-width of πH and πD provide an excellent handle on the S-wave scattering lengths.
- Caveat: the numerical values of the scattering lengths $a^{\frac{1}{2}}, a^{\frac{3}{2}}$ quoted in some of the recent literature do not concern QCD with $m_u = m_d$, but merely represent auxiliary quantities: $a_{\pi}^{\frac{5}{2}}, a_{\pi}^{\frac{5}{2}}$. \Rightarrow The values obtained for $I = \frac{1}{2}, \frac{3}{2}$ would be of considerable interest !
- Experience from $\pi\pi$ scattering: if isospin breaking is neglected, some of the low-energy theorems for quantities that break chiral symmetry are in flat disagreement with experiment.

for a thorough discussion see Gasser, PoS EFT 09 (2009) 029

• More work needed to clarify the role of isospin breaking in determinations of $\sigma_{\pi N}$ from πN scattering

but I doubt that this can yield more than another small drop on the hot stone

Potential sources of error

2. Extrapolation

- Dispersion relations for \overline{D}^+ involve two subtraction constants. These can be identified with a_{0+}^+ (S-wave) and a_{1+}^+ (P-wave).
- \Rightarrow Low-energy theorem takes the form:

$$\sigma_{\pi N} = c_1 \, a_{0+}^+ + c_2 \, a_{1+}^+ + c_3 + O(m_{ud}^2)$$
 Gasser, L., Locher, Sainio 1988

- c_1, c_2, c_3 can accurately be pinned down with dispersion relations for the S- and P-waves, using partial wave representations exclusively in the experimentally well explored region $(q > M_{\pi})$.
- $\Rightarrow \sigma_{\pi N}$ can be expressed in terms of measurable quantities.
 - If isospin breaking is understood, a_{0+}^+ can accurately be calculated from level-shift and line-width of pionic atoms.
 - Crucial remaining parameter for $\sigma_{\pi N}$: a_{1+}^+ . Does represent an observable, but very high precision is required: 1% error in a_{1+}^+ affects the result for $\sigma_{\pi N}$ by more than 3 MeV. Threshold parameter of P-wave \Rightarrow not accessible in pionic atoms.

Potential sources of error

- In all recent determinations of the *σ*-term from data on *πN* scattering (including the Roy-Steiner analysis), the subtraction constant *a*⁺₁₊ merely represents one of the many variables needed to parameterize the amplitude these are simultaneously determined by minimizing discrepancies.
- New element in the RS-calculation: the *t*-channel singularities are analyzed by solving a Muskhelishvili-Omnès problem.
- RS-equations require fewer subtractions ⇒ can calculate a⁺₁₊. But: with fewer subtractions, the high energy behaviour becomes more important. Can it be shown that the MO solution describes the physics at the necessary accuracy ?
- In my opinion, this represents the weakest part of the currently best determination of $\sigma_{\pi N}$ from πN scattering.

Conclusions

Mesons

- The quark masses are mysterious, but the mass spectrum of the lightest hadrons is well-understood in terms of these.
- Key point: *m_u*, *m_d*, *m_s* are small, can expand and retain only the first few terms, i.e. use χPT.
- χ PT predictions for the dependence of M_{π} on m_{ud} confirmed.
- χ PT predictions for the ratios $M_{\pi}: M_{\kappa}: M_{\eta}$ confirmed.
- If isospin breaking is disregarded, the mass pattern of the lightest mesons is controlled by the quark mass ratio m_s/m_{ud} , which happens to be large.
- The mass difference between π^+ and π^0 is due almost exclusively to the e.m. interaction and is understood on the basis of a low-energy theorem that does not require an expansion in m_s .

- The mass difference between K^+ and K^0 is dominated by the contribution proportional to $m_u m_d$.
- There is a low-energy theorem for this contribution, valid to NNLO of χ PT. The lattice results confirm this prediction.
- The e.m. self-energy of the K^+ is small and strongly modified by non-leading orders of the expansion in powers of m_s . Their size is determined quite well on the lattice, but more work is needed to comprehend the numerical results.

Conclusions

Baryons

- Significant progress on the lattice.
 - The results are consistent with the chiral expansion.
 - In particular, the values obtained for σ_0 confirm the old estimate obtained from the expansion of the baryon masses.
 - Violations of the OZI-rule are found to be small.
- Significant progress in dispersive analysis of πN scattering.
 - New analysis of *t*-channel dispersion relations.
 - Outcome for $\sigma_{\pi N}$ is puzzling.
 - Disagrees with the lattice results and calls for exorbitant violations of SU(3)-symmetry in the matrix elements of $\bar{q}\lambda^a q$.

- There is a wealth of data on πN scattering.
- Comparison with Roy-Steiner analysis will be most interesting. Can the experimental inconsistencies be resolved ? In particular: $\pi^- p \to \pi^0 n$, $\pi^0 p \to \pi^+ n$?
- Are the basic theoretical constraints obeyed ? Goldberger-Treiman relation (ties $g_{\pi N}$ to g_A) \checkmark Adler-Weisberger sum rule (ties g_A to the total cross sections) ?
- Are the predictions for the contributions from the *t*-channel singularities consistent with experiment ?

 Determine the matrix elements of *ūu*, *dd*, *ss* for other members of the meson and baryon octets.

• 'Scalar charge'
$$g_S = \frac{1}{2m} \langle p | \bar{u} d | n \rangle = \frac{1}{2m} \langle p | \bar{u} u - \bar{d} d | p \rangle$$

Relevant for the mass difference between *p* and *n* in QCD. González-Alonso & Martin Camalich, arXiv:1309.4434 Bhattacharya, Cirigliano et al., arXiv:1606.07049

• Any evidence for strong violations of SU(3) in scalar matrix elements ?

$\sigma_{\pi N}$ not the only puzzle worth thinking about \dots

• Proton charge radius

÷

• Standard Model prediction for magnetic moment of the muon