

Dmitrij Siemens

Pion-Nucleon Scattering in Chiral Perturbation Theory

in collaboration with V. Bernard, E. Epelbaum, A. Gasparyan, M. Hoferichter, J. Gegeila, H. Krebs, B. Kubis, U.-G. Meißner, J. Elvira de Ruiz, D. Yao

• Δ -less formulation

• Δ -ful formulation

Subthreshold matching

Motivation and Methodology

Aim Th	eoretical description of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ above threshold		
Problem I	QCD is non-perturbative for low energies		
Solution I	Effective Field Theory		
Problem II	Resonances play an important role		
Solution II	Inclusion of the most dominant resonance $\Delta(1232)$ as an explicit degree of freedom		

Formal Aspects

ΒχΡΤ & ΗΒχΡΤ

Effective Lagrangian

Tree Graphs

FIG. 1: Tree graphs for the reaction $\pi N \to \pi N$ in black/gray/white blob denotes an insertion of the $c_i/d_i/e_i$ -vertices. Crossed diagrams are not shown. FIG. 1: Tree graphs for the reaction $\pi N \to \pi N$. The black/gray/white blob denotes an insertion of the $c_i/d_i/e_i$ -vertices. Crossed diagrams are not shown.

BχPT & HBχPT

Effective Lagrangian

Tree Graphs

FIG. 1: Free graphs for the reaction TAN > The back of the device insertion of the $\varepsilon_i/d_i/\varepsilon_i$ = vertices. Crossed diagrams are not shown. FIG. 1: Tree graphs for the reaction $\pi N \to \pi N$. The black/gray/white blob denotes an insertion of the $c_i/d_i/e_i$ - vertices. Crossed diagrams are not shown.

ΒχΡΤ & ΗΒχΡΤ

Effective Lagrangian

Tree Graphs

FIG. 1: Tree graphs for the reaction $\pi N \to \pi N$. The black/gray/white blob denotes an insertion of the $c_i/d_i/e_i$ - vertices. Crossed diagrams are not shown. FIG. 1: Tree graphs for the reaction $\pi N \to \pi N$. The black/gray/white blob denotes an insertion of the $c_i/d_i/e_i$ - vertices. Crossed diagrams are not shown.

FFG. 11: Tree graphs for the reaction $\pi N \rightarrow \pi N$ is the determinant of the $c_i/dt_i/e_i$ -vertices. Crossed diagrams are not shown. FIG. 1: Tree graphs for the reaction $\pi N \rightarrow \sigma O \rho$ Ghaphes k/gray/white blob denotes an insertion of the $c_i/d_i/e_i$ -vertices. Crossed diagrams are not shown.

FIG. 2: One-loop graphs of the self-energy type. Crossed diagrams are not shown.

$$(1)$$

FFIG.11: Tree graphs for the reaction mensor intersection and the reaction of of the $c_i/d_i/d_i$ vertices. Crossed diagrams are not shown, gray, white blob denotes an insertion FIG. 1: Tree graphs for the reaction M^2 - Crossed diagrams are not shown: of the $c_i/d_i/e_i$ - vertices. Crossed diagrams are not shown: of the $c_i/d_i/e_i$ - vertices. Crossed diagrams are not shown:

of the $c_i/d_i/e_i$ - vertices. Crossed diagrams are not shown.

FIG. 2: One-loop graphs of the self-energy type. Crossed diagrams are not shown. FIG. 2: One-loop graphs of the self-energy type. Crossed diagrams are not shown.

Renormalization

Renormalization II

Meson Sector HB approach $l_i = \frac{\beta_{l_i}}{32\pi^2} \bar{l}_i + \beta_{l_i} \left(\bar{\lambda} + \frac{1}{32\pi^2} \ln\left(\frac{M_\pi^2}{\mu^2}\right) \right)$ $d_i = \bar{d}_i + \delta d_i = \bar{d}_i + \frac{\beta_{d_i}}{F^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \ln\left(\frac{M_\pi^2}{\mu^2}\right) \right)$ $e_i = \bar{e}_i + \delta e_i = \bar{e}_i + \frac{\beta_{e_i}}{F_-^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \ln\left(\frac{M_\pi^2}{\mu^2}\right) \right)$ $\bar{\lambda} = \frac{1}{16\pi^2} \left(\frac{1}{d-4} + \frac{1}{2} (\gamma_E - 1 - \ln 4\pi) \right)$ Covariant "modified" EOMS scheme $c_i = \bar{c}_i + \delta c_i^{(3)} + \delta c_i^{(4)}$ $d_i = \bar{d}_i + \delta d_i + \delta d_i^{(3)} + \delta d_i^{(4)}$ $e_i = \bar{e}_i + \delta e_i + \delta e_i^{(4)}$ $x \in \{c, d, e\}$ $\delta x_i^{(n)} = \frac{\delta \bar{x}_{i,f}^{(n)}}{F^2} + \frac{\beta_{x_i,B}^{(n)}}{F^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \ln\left(\frac{m_N^2}{\mu^2}\right) \right)$

Fits to Experimental Data

Phase Shifts

$$T^{ba} = \chi_{N'}^{\dagger} \left(\delta^{ab} T^+ + i \epsilon^{bac} \tau_c T^- \right) \chi_N$$

$$T^{\pm} = \bar{u}^{(s')} \left(A^{\pm} + \not \!\!\!/ B^{\pm} \right) u^{(s)}$$
$$f^{I}_{l\pm}(s) = \frac{1}{16\pi\sqrt{s}} \left((E + m_N) \left(A^{I}_{l}(s) + (\sqrt{s} - m_N) B^{I}_{l}(s) \right) + (E - m_N) \left(-A^{I}_{l\pm}(s) + (\sqrt{s} + m_N) B^{I}_{l\pm} \right) \right)$$
$$X^{I}_{l}(s) = \int_{-1}^{1} \mathrm{d}z \, X^{I}(s, t) P_{l}(z)$$

χΡΤ

 $X \in \{A, B\}$

$$T^{\pm} = \bar{u}_{v}^{(s')} \left(g^{\pm} + 2i S \cdot q \times q' h^{\pm}\right) u_{v}^{(s)}$$
$$f_{l\pm}^{I}(s) = \frac{E + m_{N}}{16\pi\sqrt{s}} \int_{-1}^{1} dz \left(g^{I} P_{l}(z) + q^{2} h^{I} (P_{l\pm}(z) - z P_{l}(z))\right)$$

Isospin basis

$$X^{I=1/2} = X^+ + 2X^-, \quad X^{I=3/2} = X^+ - X^-$$

$$\delta_{l\pm}^{I}(s) = \arctan(|\boldsymbol{q}| \operatorname{Re} f_{l\pm}^{I}(s))$$

Experimental Data

Experimental Data

Fitting Procedure

Fitting Procedure

Fitting Procedure

Epelbaum et al. - Eur. Phys. J. A 51 (2015)

 $T_{\pi} < \{50, 75, 100, 125, 150\}$ MeV $\cong \{1035, 1368, 1704, 1854, 2177\}$ data points

Representative Fits - $T_{\pi} < 100 \text{ MeV}$

Input

m_N	M_{π}	F_{π}	g_A						
938.27	139.57	92.2	1.289						
MeV									

					I		
Q^3	HB-NN	$HB-\pi N$	Cov	Q^4	HB-NN	$HB-\pi N$	Cov
c_1	-1.24(2)	-1.64(2)	-1.55(2)	c_1	- 1.31(8)	- 1.15(8)	- 0.82(7)
c_2	4.89(5)	3.51(3)	3.60(4)	c_2	• 1.88(23)	\bullet 2.39(22)	3 .56(16)
c_3	-7.25(2)	-6.63(2)	-6.54(2)	c_3	-4.43(9)	-4.44(9)	-4.59(9)
c_4	4.74(4)	4.01(4)	3.86(3)	c_4	3 .24(17)	• $3.45(17)$	3.44(13)
d_{1+2}	3.39(4)	4.37(4)	4.09(4)	d_{1+2}	• 5.95(9)	• $5.60(9)$	5.43(5)
d_3	-3.47(7)	-3.34(7)	-2.50(4)	d_3	-5.64(6)	-3.84(4)	-4.58(8)
d_5	0.00(4)	-0.56(4)	-0.86(4)	d_5	-0.11(4)	-0.89(4)	-0.40(4)
d_{14-15}	-7.39(13)	-7.49(13)	-6.05(10)	d_{14-15}	-11.61(9)	-9.45(8)	-9.94(7)
$\overline{\chi^2_{\pi N}/{ m dof}}$	1.04	1.03	0.97	e_{14}	0.86(29)	1.28(32)	-0.63(24)
			13.5	e_{15}	-11.36(81)	-13.26(79)	-7.33(45)
$\bar{\chi}_{\pi N}^2/\mathrm{dof}$	14.6	13.0	15.0	e_{16}	• 10.73(95)	e 8.29(95)	1.86(37)
				e_{17}	-0.66(46)	-0.73(47)	-0.90(32)
				e_{18}	4.47(87)	4.17(90)	3.17(45)
				$\overline{\chi^2_{\pi N}/{ m dof}}$	1.90	1.83	1.94

 $\overline{\bar{\chi}^2_{\pi N}/\mathrm{dof}}$

4.1

4.5

4.9

Predictions

 $T_{\pi}[GeV]$

 $T_{\pi}[GeV]$

 $T_{\pi}[GeV]$

Summary

Good description of $\pi N \rightarrow \pi N$ data up to 100 MeV

- agreement with RS S- and P-waves
- disagreement with some GW D- and F-waves
- almost no differences between the counting schemes
- χ^2 /dof increases for energies above 100 MeV
- deviations from plateau-like behavior for LECs above 100 MeV

Theoretical error underestimated for T_{π} >100 MeV

- ∧_b < 600 MeV
- \(\Delta(1232)\) is not included explicitly

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \mathcal{L}_{\pi\Delta}^{(1)} + \mathcal{L}_{\pi\Delta}^{(2)} + \mathcal{L}_{\pi\Delta}^{(4)} + \mathcal{L}_{\pi N\Delta}^{(1)} + \mathcal{L}_{\pi N\Delta}^{(2)} + \mathcal{L}_{\pi N\Delta}^{(3)} + \mathcal{L}_{\pi N\Delta}^{(4)}$$

Renormalization I

Transition to Δ -ful loops

Renormalization I

Transition to Δ -ful loops

Renormalization II

$c_{i} = \bar{c}_{i} + \delta c_{i}^{(3,\Delta)} + \delta c_{i}^{(4,\Delta)}$ $d_{i} = \bar{d}_{i} + \delta d_{i} + \delta d_{i}^{(3,\Delta)} + \delta d_{i}^{(4,\Delta)}$ $e_{i} = \bar{e}_{i} + \delta e_{i} + \delta e_{i}^{(4,\Delta)}$ $\delta x_{i}^{(n,\Delta)} = \frac{\delta}{\delta x_{i}^{(n,\Delta)}}$

$$\delta x_i = \frac{\beta_{x_i} + \beta_{x_i}^{\Delta}}{F_{\pi}^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \ln\left(\frac{M_{\pi}^2}{\mu^2}\right) \right)$$
$$\delta x_i^{(n,\Delta)} = \frac{\delta \bar{x}_{i,f}^{(n,\Delta)}}{F_{\pi}^2} + \frac{\beta_{x_i}^{(n,\Delta)}}{F_{\pi}^2} \left(\bar{\lambda} + \frac{1}{16\pi^2} \ln\left(\frac{2\Delta}{\mu}\right) \right)$$

Covariant "modified" EOMS scheme

$$c_{i} = \bar{c}_{i} + \delta c_{i}^{(3)} + \delta c_{i}^{(3,\Delta)} + \delta c_{i}^{(4)} + \delta c_{i}^{(4,\Delta)}$$

$$d_{i} = \bar{d}_{i} + \delta d_{i} + \delta d_{i}^{(3)} + \delta d_{i}^{(3,\Delta)} + \delta d_{i}^{(4)} + \delta d_{i}^{(4,\Delta)}$$

$$e_{i} = \bar{e}_{i} + \delta e_{i} + \delta e_{i}^{(4)} + \delta e_{i}^{(4,\Delta)}$$

$$x \in \{c, d, e\}$$

$$\begin{split} \delta x_i &= \frac{\beta_{x_i} + \beta_{x_i}^{\Delta}}{F_{\pi}^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \ln \left(\frac{M_{\pi}^2}{\mu^2} \right) \right) \\ F_{\pi}^2 \, \delta x^{(n)} &= a_0 + a_1 A_0(m_N^2) \\ F_{\pi}^2 \, \delta x^{(n,\Delta)} &= a_0 + a_1 A_0(m_N^2) + a_2 A_0(m_{\Delta}^2) + b_1 B_0(m_N^2, 0, m_{\Delta}^2) + b_2 B_0(m_{\Delta}^2, 0, m_N^2) \\ &+ c_1 C_0(m_N^2, 0, m_{\Delta}^2, 0, m_N^2, m_N^2) + c_2 C_0(m_N^2, 0, m_{\Delta}^2, 0, m_{\Delta}^2, m_{\Delta}^2) \\ &+ c_3 C_0(m_{\Delta}^2, 0, m_N^2, 0, m_N^2, m_{\Delta}^2) + c_4 C_0(m_N^2, 0, m_{\Delta}^2, 0, m_N^2, m_{\Delta}^2) \end{split}$$

Fitting Procedure

Epelbaum et al. - Eur. Phys. J. A 51 (2015)

Fits - LECs over T_{π}

-1.3

Representative Fits - $T_{\pi} < 125$ MeV

Input

Predictions

P-Waves Theo. Error

D-Waves Theo. Error

F-Waves Theo. Error

Summary

Good description of $\pi N \rightarrow \pi N$ data up to 170 MeV

- agreement with exp. scattering data
- agreement with RS S- and P-waves
- problems with some GW D- and F-waves
- almost no differences between the counting schemes
- χ²/dof stays constant for energies above 100 MeV
- limited by applicability of K-matrix unitarization
- correlations between LECs

Extensions

- Complex mass approach
- consistent combined fits of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ exp. data

Subthreshold Parameters

Matching RS to χPT

RS analysis

$d_{00}^+ [M_\pi^{-1}]$	-1.36(3)	$d_{00}^{-}[M_{\pi}^{-2}] = 1.41(1)$
$d_{10}^+ [M_\pi^{-3}]$	1.16(2)	$d_{10}^{-}[M_{\pi}^{-4}] - 0.159(4)$
$d_{01}^+ [M_\pi^{-3}]$	1.16(2)	$d_{01}^{-}[M_{\pi}^{-4}] - 0.141(5)$
$d_{20}^+ \left[M_\pi^{-5} \right]$		$b_{00}^{-} [M_{\pi}^{-2}] 10.49(11)$
$d_{11}^+ [M_\pi^{-5}]$		$b_{10}^{-} [M_{\pi}^{-4}] = 1.00(3)$
$d_{02}^+ \left[M_\pi^{-5} \right]$	0.0336(6)	$b_{01}^{-} [M_{\pi}^{-4}] = 0.21(2)$
$b_{00}^+ \left[M_\pi^{-3} \right]$	-3.45(7)	

Hoferichter, Ruiz de Elvira, Kubis, Meißner - Phys.Rev.Lett. 115 (2015)

χPT

$$\bar{D}^{\pm}(\nu,t) = \begin{pmatrix} 1\\\nu \end{pmatrix} \sum_{n,m=0}^{\infty} d_{mn}^{\pm} \nu^{2m} t^n$$
$$\bar{B}^{\pm}(\nu,t) = \begin{pmatrix} \nu\\1 \end{pmatrix} \sum_{n,m=0}^{\infty} b_{mn}^{\pm} \nu^{2m} t^n$$

Matching RS to χPT

RS analysis

$d_{00}^+ [M_\pi^{-1}] -1.36(3)$	$d_{00}^{-} [M_{\pi}^{-2}] = 1.41(1)$
$d_{10}^+ [M_\pi^{-3}] = 1.16(2)$	$d_{10}^{-}[M_{\pi}^{-4}] - 0.159(4)$
$d_{01}^+ [M_\pi^{-3}] = 1.16(2)$	$d_{01}^{-}[M_{\pi}^{-4}] - 0.141(5)$
$d_{20}^+ [M_\pi^{-5}] = 0.196(3)$	$b_{00}^{-}[M_{\pi}^{-2}]$ 10.49(11)
$d_{11}^+ [M_\pi^{-5}] = 0.185(3)$	$b_{10}^{-}[M_{\pi}^{-4}]$ 1.00(3)
$d_{02}^+ [M_\pi^{-5}] \ 0.0336(6)$	$b_{01}^{-}[M_{\pi}^{-4}] = 0.21(2)$
$b_{00}^+ [M_\pi^{-3}] -3.45(7)$	

Hoferichter, Ruiz de Elvira, Kubis, Meißner - Phys.Rev.Lett. 115 (2015)

χPT

$$\bar{D}^{\pm}(\nu,t) = \begin{pmatrix} 1\\\nu \end{pmatrix} \sum_{n,m=0}^{\infty} d_{mn}^{\pm} \nu^{2m} t^n$$
$$\bar{B}^{\pm}(\nu,t) = \begin{pmatrix} \nu\\1 \end{pmatrix} \sum_{n,m=0}^{\infty} b_{mn}^{\pm} \nu^{2m} t^n$$

N ³ LO	Q^4	ε^4	Q^4	ε^4	Q^4	ε^4
c_1	-1.11(3)	-1.11(3)	-1.11(3)	-1.11(3)	-1.12(3)	-1.10(3)
c_2	3.61(4)	1.41(38)	3.17(3)	1.28(20)	3.35(3)	1.16(20)
c_3	-5.60(6)	-1.88(45)	-5.67(6)	-2.04(39)	-5.70(6)	-2.10(39)
c_4	4.26(4)	2.03(28)	4.35(4)	2.07(29)	3.97(3)	1.91(27)
d_{1+2}	6.37(9)	1.78(31)	7.66(9)	2.90(30)	4.70(7)	1.78(24)
d_3	-9.18(9)	-3.64(36)	-10.77(10)	-5.91(50)	-5.26(5)	-3.25(14)
d_5	0.87(5)	1.52(7)	0.59(5)	1.03(7)	0.31(5)	0.66(6)
d_{14-15}	-12.56(12)	-4.38(54)	-13.44(12)	-5.17(55)	-8.84(10)	-3.41(41)
e_{14}	1.16(4)	1.64(10)	0.85(4)	1.12(16)	1.17(4)	1.28(11)
e_{15}	-2.26(6)	-4.95(15)	-0.83(6)	-3.30(25)	-2.58(7)	-3.07(13)
e_{16}	-0.29(3)	4.21(16)	-2.75(3)	1.92(43)	-1.77(3)	1.71(17)
e_{17}	-0.17(6)	-0.44(6)	0.03(6)	-0.39(7)	-0.45(6)	-0.51(7)
e_{18}	-3.47(5)	1.34(29)	-4.48(5)	0.67(31)	-1.68(5)	1.30(17)

Predictions - Threshold Parameters

	Ż	B-NN	•	HBMM		Con	
N ³ LO	Q^4	ε^4	Q^4	ε^4	Q^4	ε^4	RS
$a_{0+}^+[M_\pi^{-1}10^{-3}]$	-1.5	-1.5(8.5)	-8.0	1.2(20.4)	-5.7	-0.8(10.3)	-0.9(1.4)
$a_{0+}^{-}[M_{\pi}^{-1}10^{-3}]$	68.5	96.3(2.0)	58.6	70.0(3.3)	83.8	83.6(1.9)	85.4(9)
$a_{1+}^+[M_\pi^{-3}10^{-3}]$	134.3	136.0(9.7)	132.1	135.2(8.7)	128.0	132.7(9.0)	131.2(1.7)
$a_{1+}^{-}[M_{\pi}^{-3}10^{-3}]$	-80.9	-80.0(3.4)	-90.1	-86.4(2.7)	-78.1	-81.1(3.6)	-80.3(1.1)
$a_{1-}^+[M_{\pi}^{-3}10^{-3}]$	-55.7	-47.5(10.5)	-73.7	-56.9(7.1)	-53.5	-51.4(7.9)	-50.9(1.9)
$a_{1-}^{-}[M_{\pi}^{-3}10^{-3}]$	-10.0	-5.6(4.9)	-23.7	-14.4(6.5)	-11.8	-10.4(5.7)	-9.9(1.2)
$b_{0+}^{+}[M_{\pi}^{-3}10^{-3}]$	-42.2	-31.4(8.1)	-44.5	-32.6(21.3)	-54.7	-33.9(8.5)	-45.0(1.0)
$b_{0+}^{-}[M_{\pi}^{-3}10^{-3}]$	-31.6	7.1(2.3)	-65.2	-34.1(5.7)	2.3	2.9(2.1)	4.9(8)

P-Waves Stat. Error

D-Waves Stat. Error

• GW ε^2

F-Waves Stat. Error

πN-Sigma Term

Hellmann-Feynman theorem

$$\sigma_{\pi N} = M_{\pi}^2 \frac{\partial m_N}{\partial M_{\pi}^2}$$

$$\sigma_{\pi N} = (59.1 \pm 3.5) \text{ MeV}$$

1/m_N - Convergence

LECs	$1/m_N$	d_{00}^+	d_{10}^+	d_{01}^+	d_{20}^+	d_{11}^+	d_{02}^+	b_{00}^+	d_{00}^{-}	d_{10}^{-}	d_{01}^{-}	b_{00}^{-}	b_{10}^{-}	b_{01}^{-}
HB	Q^4	-0.48	-0.67	0.70	1.30	0.80	0.052	-1.44	0.71	0.77	-0.06	6.67	6.29	0.47
Cov														
Cov	All	-1.22	0.75	0.97	0.54	0.43	-0.004	-6.05	1.40	-0.21	-0.25	8.03	4.13	0.38
F	RS	-1.36	1.16	1.16	0.20	0.18	0.034	-3.45	1.41	-0.16	-0.14	10.49	1.00	0.21

1/m_N - Convergence

LECs	$1/m_N$	d_{00}^+	d_{10}^+	d_{01}^+	d_{20}^+	d_{11}^+	d_{02}^+	b_{00}^+	d_{00}^{-}	d_{10}^{-}	d_{01}^{-}	b_{00}^{-}	b_{10}^{-}	b_{01}^{-}
HB	Q^4	-0.48	-0.67	0.70	1.30	0.80	0.052	-1.44	0.71	0.77	-0.06	6.67	6.29	0.47
	Q^4	-1.19	0.69	0.95	0.66	0.51	0.003	-1.85	0.92	0.50	-0.04	6.50	5.62	0.53
Cov														
Cov	All	-1.22	0.75	0.97	0.54	0.43	-0.004	-6.05	1.40	-0.21	-0.25	8.03	4.13	0.38
F	RS	-1.36	1.16	1.16	0.20	0.18	0.034	-3.45	1.41	-0.16	-0.14	10.49	1.00	0.21

1/m_N - Convergence

LECs	$1/m_N$	d_{00}^+	d_{10}^+	d_{01}^+	d_{20}^+	d_{11}^+	d_{02}^+	b_{00}^+	d_{00}^{-}	d_{10}^{-}	d_{01}^{-}	b_{00}^{-}	b_{10}^{-}	b_{01}^{-}
HB	Q^4	-0.48	-0.67	0.70	1.30	0.80	0.052	-1.44	0.71	0.77	-0.06	6.67	6.29	0.47
	Q^4	-1.19	0.69	0.95	0.66	0.51	0.003	-1.85	0.92	0.50	-0.04	6.50	5.62	0.53
Cov	Q^5	-1.22	0.73	0.98	0.52	0.38	-0.004	-5.05	1.24	0.21	-0.17	8.49	3.30	0.29
	Q^6	-1.21	0.72	0.97	0.59	0.42	-0.005	-6.24	1.43	-0.33	-0.27	8.06	3.91	0.36
	Q^7	-1.22	0.75	0.97	0.53	0.43	-0.004	-5.96	1.38	-0.19	-0.25	8.00	4.23	0.39
Cov	All	-1.22	0.75	0.97	0.54	0.43	-0.004	-6.05	1.40	-0.21	-0.25	8.03	4.13	0.38
F	RS	-1.36	1.16	1.16	0.20	0.18	0.034	-3.45	1.41	-0.16	-0.14	10.49	1.00	0.21

odd powers in M_{π} enhanced by

even powers in M_{π} enhanced by $\ln(M_{\pi}^2/m_N^2)$

 $\arctan(M_{\pi}/m_N)$

 π