Pion-Nucleon Scattering in Chiral Perturbation Theory

in collaboration with V. Bernard, E. Epelbaum, A. Gasparyan, M. Hoferichter, J. Gegeila, H. Krebs, B. Kubis, U.-G. Meißner, J. Elvira de Ruiz, D. Yao

- Δ-less formulation
- Δ-ful formulation
- Subthreshold matching

Motivation and Methodology

Aim Theoretical description of $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ and $\pi \mathrm{N} \rightarrow \pi \pi \mathrm{N}$ above threshold

```
Problem I QCD is non-perturbative for low energies
Solution I Effective Field Theory = Chiral Perturbation Theory
Problem II Resonances play an important role
Solution II Inclusion of the most dominant resonance }\Delta(1232
        as an explicit degree of freedom
```


Chiral Approaches

BxPT

- EFT of Standard Model
- Relies upon chiral symmetry of QCD
- DOF are mesons and baryons instead of quarks
- Breakdown scale of theory: Λ_{b}

$\mathrm{HB} \chi \mathrm{PT}$

- Non-relativistic limit of χ PT
- Inclusion of $1 / m_{N}$ expansion into power counting
- HB- $\pi \mathrm{N}: q / m_{N} \sim q / \Lambda_{b}$ HB-NN: $q / m_{N} \sim\left(q / \Lambda_{b}\right)^{2}$
- Original motivation: calculations beyond tree-level

Formal Aspects

BZPI \& HBXPY

Effective Lagrangian

ByPI \& HBzPT

Effective Lagrangian

$\mathrm{B} \gamma \mathrm{PI}$ \& H HByPT

Effective Lagrangian

Tree Graphs

$\mathrm{B} \gamma \mathrm{PI}$ \& H HByPT

Effective Lagrangian

Tree Graphs

$\mathrm{B} \gamma \mathrm{PI}$ \& H HByPT

Effective Lagrangian

Tree Graphs

$\mathrm{B} \gamma \mathrm{PI}$ \& H HByPT

Effective Lagrangian

Tree Graphs

Loop Graphs

Transition from LO loops to NLO loops

Renormalivation I

Meson Sector

$$
\begin{aligned}
M^{2} & =M_{\pi}^{2}+\delta M^{(4)} \\
Z_{\pi} & =1+\delta Z_{\pi}^{(4)} \\
F & =F_{\pi}+\delta F_{\pi}^{(4)}
\end{aligned}
$$

Axial-coupling constant

Nucleon Self Energy

$$
\begin{aligned}
m & =m_{N}+\delta m^{(2)}+\delta m^{(3)}+\delta m^{(4)} \\
Z_{N} & =1+\delta Z_{N}^{(3)}+\delta Z_{N}^{(4)}
\end{aligned}
$$

Linear Combinations

$$
\begin{aligned}
& \bar{c}_{1} \rightarrow \bar{c}_{1}+2 M_{\pi}^{2}\left(\bar{e}_{22}-4 \bar{e}_{38}+\bar{c}_{1} \beta_{l_{3}} \bar{l}_{3} /\left(32 \pi^{2} F_{\pi}^{2}\right)\right) \\
& \bar{c}_{2} \rightarrow \bar{c}_{2}-8 M_{\pi}^{2}\left(\bar{e}_{20}+\bar{e}_{35}\right) \\
& \bar{c}_{3} \rightarrow \bar{c}_{3}-4 M_{\pi}^{2}\left(2 \bar{e}_{19}-\bar{e}_{22}-\bar{e}_{36}\right) \\
& \bar{c}_{4} \rightarrow \bar{c}_{4}-4 M_{\pi}^{2}\left(2 \bar{e}_{21}-\bar{e}_{37}\right)
\end{aligned}
$$

Meson Sector

$$
\begin{aligned}
l_{i} & =\frac{\beta_{l_{i}}}{32 \pi^{2}} \bar{l}_{i}+\beta_{l_{i}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \ln \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right) \\
\bar{\lambda} & =\frac{1}{16 \pi^{2}}\left(\frac{1}{d-4}+\frac{1}{2}\left(\gamma_{E}-1-\ln 4 \pi\right)\right)
\end{aligned}
$$

HB approach

$$
\begin{aligned}
d_{i} & =\bar{d}_{i}+\delta d_{i}=\bar{d}_{i}+\frac{\beta_{d_{i}}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \ln \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right) \\
e_{i} & =\bar{e}_{i}+\delta e_{i}=\bar{e}_{i}+\frac{\beta_{e_{i}}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \ln \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right)
\end{aligned}
$$

Covariant "modified" EOMS scheme

$$
\begin{aligned}
& c_{i}=\bar{c}_{i}+\delta c_{i}^{(3)}+\delta c_{i}^{(4)} \\
& d_{i}=\bar{d}_{i}+\delta d_{i}+\delta d_{i}^{(3)}+\delta d_{i}^{(4)} \\
& e_{i}=\bar{e}_{i}+\delta e_{i}+\delta e_{i}^{(4)}
\end{aligned}
$$

$$
x \in\{c, d, e\}
$$

$$
\delta x_{i}^{(n)}=\frac{\delta \bar{x}_{i, f}^{(n)}}{F_{\pi}^{2}}+\frac{\beta_{x_{i, B}}^{(n)}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \ln \left(\frac{m_{N}^{2}}{\mu^{2}}\right)\right)
$$

Fits to Experimental Data

$$
\begin{aligned}
& T^{b a}=\chi_{N^{\prime}}^{\dagger}\left(\delta^{a b} T^{+}+\mathrm{i} \epsilon^{b a c} \tau_{c} T^{-}\right) \chi_{N} \\
& T^{ \pm}=\bar{u}^{\left(s^{\prime}\right)}\left(A^{ \pm}+q B^{ \pm}\right) u^{(s)} \\
& f_{l \pm}^{I}(s)=\frac{1}{16 \pi \sqrt{s}}\left(\left(E+m_{N}\right)\left(A_{l}^{I}(s)+\left(\sqrt{s}-m_{N}\right) B_{l}^{I}(s)\right)\right. \\
& \left.+\left(E-m_{N}\right)\left(-A_{l \pm}^{I}(s)+\left(\sqrt{s}+m_{N}\right) B_{l \pm}^{I}\right)\right) \\
& X_{l}^{I}(s)=\int_{-1}^{1} \mathrm{~d} z X^{I}(s, t) P_{l}(z) \\
& X \in\{A, B\} \\
& T^{ \pm}=\bar{u}_{v}^{\left(s^{\prime}\right)}\left(g^{ \pm}+2 \mathrm{i} S \cdot q \times q^{\prime} h^{ \pm}\right) u_{v}^{(s)} \\
& f_{l \pm}^{I}(s)=\frac{E+m_{N}}{16 \pi \sqrt{s}} \int_{-1}^{1} \mathrm{~d} z\left(g^{I} P_{l}(z)+\boldsymbol{q}^{2} h^{I}\left(P_{l \pm}(z)-z P_{l}(z)\right)\right)
\end{aligned}
$$

HB χ PT

Isospin basis

$$
X^{I=1 / 2}=X^{+}+2 X^{-}, \quad X^{I=3 / 2}=X^{+}-X^{-}
$$

Unitarization prescription

$$
\delta_{l \pm}^{I}(s)=\arctan \left(|\boldsymbol{q}| \operatorname{Re} f_{l \pm}^{I}(s)\right)
$$

Dxperimental Data

Electromagnetic corrections to πN scattering

B. Tromborg

The Niels Bohr Institute, Copenhagen, Denmark
S. Waldenstr $\phi \mathrm{m}$ and I. \varnothing verb ϕ

Institute of Physics, University of Trondheim, NLHT, Trondheim, Norway
(Received 27 October 1976)
Numerical results are presented for the electromagnetic corrections to the S - and P-wave phase shifts and inelasticities in $\pi^{+} p$ and πp scattering. A discussion is given of how to apply the corrections in practical data analysis.

Piting Procedure

Fluting Procedure

Workman et al. - Phys. Rev. C 86 (2012)

Fluting Procedure

Workman et al. - Phys. Rev. C 86 (2012)

Theoretical Error

Pits - LECs over I_{π}

Input

m_{N}	M_{π}	F_{π}	g_{A}
938.27	139.57	92.2	1.289
MeV			

Predictions

S-Waves Theo. Error

- RS

-=-=- Q^{3}
$-Q^{4}$

P-Waves Theo. Error

- RS

----- Q^{3}
$-Q^{4}$

D-Waves Theo. Error

- GW

- GW

$--=-Q^{3}$
$\longrightarrow Q^{4}$

Good description of $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ data up to 100 MeV

- agreement with RS S- and P-waves
- disagreement with some GW D- and F-waves
- almost no differences between the counting schemes
- X^{2} /dof increases for energies above 100 MeV
- deviations from plateau-like behavior for LECs above 100 MeV

Theoretical error underestimated for $\mathrm{T}_{\pi}>100 \mathrm{MeV}$

- $\Lambda_{b}<600 \mathrm{MeV}$
- $\Delta(1232)$ is not included explicitly

Including $\Delta(1232)$

ByPI \& HBZPT

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad \varepsilon=\left\{\frac{q}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
& +\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
& +\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}
\end{aligned}
$$

ByPT \& HBzPT

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&\left.+\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}, \frac{q}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
&
\end{aligned}
$$

Δ Tree Graphs

BZPI \& HBXPY

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}= & \mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
+ & \mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
+ & \mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)} \\
& \Delta \text { Tree Graphs }
\end{aligned}
$$

ByPT \& HBryPT

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}= \mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+ \mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&+\mathcal{L}_{\pi N \Delta}^{(1)}+\underbrace{\mathcal{L}_{\pi N \Delta}^{(2)}}_{\Delta N \Delta}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\} \\
& \Delta \text { Tree Graphs }
\end{aligned}
$$

ByPT \& HBryPT

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}= \mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+ \mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&+ \mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)} \\
& \Delta \text { Tree Graphs }
\end{aligned}
$$

BZPI \& HBXPY

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}= \mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+ \mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&+\left.\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
& \Delta \text { Tree Graphs }
\end{aligned}
$$

ByPT \& HBzPT

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&\left.+\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
&
\end{aligned}
$$

Δ Tree Graphs

Δ Loop Vertices

ByPI \& HBzPT

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}= \mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+ \mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&+\underbrace{(1)}_{\pi N \Delta}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)} \\
& \Delta \text { Tree Graphs }
\end{aligned}
$$

Δ Loop Vertices

BZPI \& HBXPY

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&\left.+\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
&
\end{aligned}
$$

Δ Tree Graphs

Δ Loop Vertices

BryP \& HBzPT

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}= \mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \\
&+ \mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
&+\mathcal{L}_{\pi N \Delta}^{(1)}+\underbrace{\mathcal{L}_{\pi N}^{(2)}}_{\Delta N \Delta}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}, \frac{M_{\pi}}{\Lambda_{b}}\} \\
& \Delta \text { Tree Graphs }
\end{aligned}
$$

$3 \quad \Delta$ Loop Vertices

BryP \& HBzPT

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad \varepsilon=\left\{\frac{q}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
& +\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
& +\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}
\end{aligned}
$$

Δ Tree Graphs

Δ Loop Vertices

BryP \& HBzPT

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad \varepsilon=\left\{\frac{q}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
& +\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
& +\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}
\end{aligned}
$$

Δ Tree Graphs

$\varepsilon^{3} \quad \Delta$ Loop Vertices

$\mathrm{B} \gamma \mathrm{PI} \& \mathrm{HB} \mathrm{HPT}$

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad \varepsilon=\left\{\frac{q}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}, \frac{\Delta}{\Lambda_{b}}\right\} \\
& +\mathcal{L}_{\pi \Delta}^{(1)}+\mathcal{L}_{\pi \Delta}^{(2)}+\mathcal{L}_{\pi \Delta}^{(4)} \\
& +\mathcal{L}_{\pi N \Delta}^{(1)}+\mathcal{L}_{\pi N \Delta}^{(2)}+\mathcal{L}_{\pi N \Delta}^{(3)}+\mathcal{L}_{\pi N \Delta}^{(4)}
\end{aligned}
$$

Δ Tree Graphs

Δ Loop Vertices

Renormalivation I

Transition to Δ-ful loops

Renormalization I

Transition to Δ-ful loops

Nucleon Sector

$$
m=m_{N}+\delta m^{(2)}+\delta m^{(3)}+\delta m^{(3, \Delta)}+\delta m^{(4)}+\delta m^{(4, \Delta)}
$$

$$
Z_{N}=1+\delta Z_{N}^{(3)}+\delta Z_{N}^{(3, \Delta)}+\delta Z_{N}^{(4)}+\delta Z_{N}^{(4, \Delta)}
$$

$$
g=g_{A}+\delta g^{(3)}+\delta g^{(3, \Delta)}+\delta g^{(4, \Delta)}
$$

Δ Sector

$$
\begin{gathered}
\mathbf{m}=m_{\Delta}+\delta \mathbf{m}^{(2)}+\delta \mathbf{m}^{(3)}+\delta \mathbf{m}^{(4)} \\
Z_{\Delta}=1+\delta Z_{\Delta}^{(3)}+\delta Z_{\Delta}^{(4)} \\
h=h_{A}+\delta h^{(3)}+\delta h^{(4)}
\end{gathered}
$$

HB approach

$$
\begin{aligned}
c_{i} & =\bar{c}_{i}+\delta c_{i}^{(3, \Delta)}+\delta c_{i}^{(4, \Delta)} \\
d_{i} & =\bar{d}_{i}+\delta d_{i}+\delta d_{i}^{(3, \Delta)}+\delta d_{i}^{(4, \Delta)} \\
e_{i} & =\bar{e}_{i}+\delta e_{i}+\delta e_{i}^{(4, \Delta)}
\end{aligned}
$$

$$
\begin{aligned}
\delta x_{i} & =\frac{\beta_{x_{i}}+\beta_{x_{i}}^{\Delta}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \ln \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right) \\
\delta x_{i}^{(n, \Delta)} & =\frac{\delta \bar{x}_{i, f}^{(n, \Delta)}}{F_{\pi}^{2}}+\frac{\beta_{x_{i}}^{(n, \Delta)}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{16 \pi^{2}} \ln \left(\frac{2 \Delta}{\mu}\right)\right)
\end{aligned}
$$

Covariant "modified" EOMS scheme

$$
\begin{aligned}
c_{i} & =\bar{c}_{i}+\delta c_{i}^{(3)}+\delta c_{i}^{(3, \Delta)}+\delta c_{i}^{(4)}+\delta c_{i}^{(4, \Delta)} \\
d_{i} & =\bar{d}_{i}+\delta d_{i}+\delta d_{i}^{(3)}+\delta d_{i}^{(3, \Delta)}+\delta d_{i}^{(4)}+\delta d_{i}^{(4, \Delta)} \\
e_{i} & =\bar{e}_{i}+\delta e_{i}+\delta e_{i}^{(4)}+\delta e_{i}^{(4, \Delta)}
\end{aligned}
$$

$$
\begin{aligned}
\delta x_{i} & =\frac{\beta_{x_{i}}+\beta_{x_{i}}^{\Delta}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \ln \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right) \\
F_{\pi}^{2} \delta x^{(n)} & =a_{0}+a_{1} A_{0}\left(m_{N}^{2}\right) \\
F_{\pi}^{2} \delta x^{(n, \Delta)} & =a_{0}+a_{1} A_{0}\left(m_{N}^{2}\right)+a_{2} A_{0}\left(m_{\Delta}^{2}\right)+b_{1} B_{0}\left(m_{N}^{2}, 0, m_{\Delta}^{2}\right)+b_{2} B_{0}\left(m_{\Delta}^{2}, 0, m_{N}^{2}\right) \\
& +c_{1} C_{0}\left(m_{N}^{2}, 0, m_{\Delta}^{2}, 0, m_{N}^{2}, m_{N}^{2}\right)+c_{2} C_{0}\left(m_{N}^{2}, 0, m_{\Delta}^{2}, 0, m_{\Delta}^{2}, m_{\Delta}^{2}\right) \\
& +c_{3} C_{0}\left(m_{\Delta}^{2}, 0, m_{N}^{2}, 0, m_{N}^{2}, m_{\Delta}^{2}\right)+c_{4} C_{0}\left(m_{N}^{2}, 0, m_{\Delta}^{2}, 0, m_{N}^{2}, m_{\Delta}^{2}\right)
\end{aligned}
$$

$$
\hat{\chi}^{2}=\chi_{\pi N}^{2}+\chi_{\mathrm{RS}}^{2}+\chi_{C}^{2}
$$

incl. 8 leading subthreshold parameters

$$
\chi_{C}^{2}=\sum_{i}\left(\frac{a_{i}^{2}-\bar{a}_{i}^{2}}{\delta a_{i}^{2}}\right)^{2}
$$

$$
\boldsymbol{a}=\left\{g_{1}, b_{4}, b_{5}\right\}
$$

Theoretical Error

convergence behavior $\delta \mathcal{O}_{i}^{(n)}=\max \left(\left|\mathcal{O}_{i}^{(1)}\right| Q^{n},\left\{\left|\mathcal{O}_{i}^{(k)}-\mathcal{O}_{i}^{(j)}\right| Q^{n-j}\right\}\right) \quad j<k \leq n: Q=\frac{\omega_{\mathrm{CMS}}}{\Lambda_{b}}$

$$
\begin{array}{l:l}
\text { actual higher order } & \delta \mathcal{O}_{i}^{(n)} \geq \max \left(\left\{\left|\mathcal{O}_{i}^{(k)}-\mathcal{O}_{i}^{(j)}\right|\right\}\right) \quad n \leq j<k \\
\Lambda_{b}=700 \mathrm{MeV}
\end{array}
$$ contributions

with
theo. error

- $\mathrm{HB}-\mathrm{NN}$
- $\mathrm{HB}-\pi \mathrm{N}$
- Cov

without theo. error

$$
T_{\pi}<\{100,125,150,175,200\} \mathrm{MeV} \widehat{=}\{1704,1854,2176,2399,2564\} \text { data points }
$$

Fits - LECs over T_{π}

- HB-NN
- $\mathrm{HB}-\pi \mathrm{N}$
- Cov

Input

m_{N}	M_{π}	F_{π}	m_{Δ}	g_{A}
938.27	139.57	92.2	1232	1.289

MeV

B^{\prime}					c°	
ε^{4}	$\pi \mathrm{N}$	$\pi \mathrm{N}+\mathrm{RS}$	$\pi \mathrm{N}$	$\pi \mathrm{N}+\mathrm{RS}$	$\pi \mathrm{N}$	$\pi \mathrm{N}+\mathrm{RS}$
h_{A}	- 1.38(1)	1.37(1)	- 1.39(1)	1.38(1)	- $1.42(1)$	1.40(1)
c_{1}	-1.45(5)	-1.39(3)	- $-1.29(5)$	$-1.30(4)$	- $-1.50(4)$	-1.32(3)
c_{2}	0.39(13)	0.51(10)	- $1.66(13)$	$1.61(10)$	- $0.52(7)$	0.86(5)
c_{3}	-2.14(7)	-2.12(6)	-2.37(5)	-2.34(5)	-1.98(7)	-1.98(6)
c_{4}	2.47 (10)	2.29(5)	2.56(10)	2.43(6)	2.31(7)	2.28(4)
d_{1+2}	2.12(7)	$2.07(6)$	1.98 (7)	. $1.94(6)$	1.67(5)	1.74 (5)
d_{3}	-2.61(6)	-2.62(5)	-1.97(4)	-1.96(4)	-3.13(4)	-3.07(4)
d_{5}	0.36(3)	0.39(3)	0.13(3)	0.15 (3)	0.90(3)	0.81(3)
d_{14-15}	--3.38(13)	3.53(12)	--2.75(11)	-2.76(10)	--2.94(10)	-3.16(9)
e_{14}	2.10 (15)	2.30 (13)	1.76 (14)	1.92(12)	1.76(12)	1.61(10)
e_{15}	-3.41(45)	-4.13(26)	- $-1.92(50)$	-2.61(31)	-2.27(19)	-2.50(17)
e_{16}	2.55 (48)	2.70 (28)	- $-1.23(56)$	-0.65(37)	1.40(18)	0.88(9)
e_{17}	-0.63(23)	-0.53(20)	-0.59(21)	-0.71(19)	-0.96(15)	-0.87(14)
e_{18}	-0.82(43)	-0.11(15)	-0.36(42)	0.30(21)	0.82(18)	1.03(10)
g_{1}	-2.41(20)	-2.52(19)	-2.55(19)	-2.60(17)	-2.35(21)	-2.32(20)
b_{4}	-1.33(34)	-1.45(29)	-1.44(31)	-1.56(28)	$1.07(43)$	1.55 (28)
b_{5}	-1.24(37)	-1.39(32)	-1.31(35)	-1.39(32)	0.81(65)	$1.35(32)$
$\chi_{\chi N}^{2} / \mathrm{dof}$	1.73	1.73	1.80	1.80	1.78	1.80
$\overline{\bar{\chi}}_{\pi N}^{2} / \mathrm{dof}$	1.91	1.92	1.92	1.92	1.91	1.93

Predictions

- $\mathrm{T}_{\pi}=167 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=140 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=121 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=90 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=42 \pm 5 \mathrm{MeV}$

$工 \varepsilon^{4}$
- $\mathrm{T}_{\pi}=167 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=140 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=121 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=90 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=42 \pm 5 \mathrm{MeV}$

- $\mathrm{T}_{\pi}=167 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=140 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=121 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=90 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=42 \pm 5 \mathrm{MeV}$

- $\mathrm{T}_{\pi}=167 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=140 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=121 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=90 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=42 \pm 5 \mathrm{MeV}$

S-Waves Theo. Error

- RS

$$
\begin{gathered}
\text {--.-... } \varepsilon^{2} \\
-=-=-\varepsilon^{3} \\
\quad \varepsilon^{4}
\end{gathered}
$$

P-Waves Theo. Drror

D. Waves Theo. Error

F-Waves Theo. Error

Good description of $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ data up to 170 MeV

- agreement with exp. scattering data
- agreement with RS S- and P-waves
- problems with some GW D- and F-waves
- almost no differences between the counting schemes
- $\mathrm{X}^{2} / \mathrm{dof}$ stays constant for energies above 100 MeV
- limited by applicability of K-matrix unitarization
- correlations between LECs

Extensions

- Complex mass approach
- consistent combined fits of $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ and $\pi \mathrm{N} \rightarrow \pi \pi \mathrm{N} \exp$. data
- Q^{4}
- ε^{4}

Subthreshold Parameters

Matching RS to $\chi P I$

RS analysis

$d_{00}^{+}\left[M_{\pi}^{-1}\right]$	$-1.36(3)$	$d_{00}^{-}\left[M_{\pi}^{-2}\right]$	$1.41(1)$
$d_{10}^{+}\left[M_{\pi}^{-3}\right]$	$1.16(2)$	$d_{10}^{-}\left[M_{\pi}^{-4}\right]$	$-0.159(4)$
$d_{01}^{+}\left[M_{\pi}^{-3}\right]$	$1.16(2)$	$d_{01}^{-}\left[M_{\pi}^{-4}\right]$	$-0.141(5)$
$d_{20}^{+}\left[M_{\pi}^{-5}\right]$	$0.196(3)$	$b_{00}^{-}\left[M_{\pi}^{-2}\right]$	$10.49(11)$
$d_{11}^{+}\left[M_{\pi}^{-5}\right]$	$0.185(3)$	$b_{10}^{-}\left[M_{\pi}^{-4}\right]$	$1.00(3)$
$d_{02}^{+}\left[M_{\pi}^{-5}\right]$	$0.0336(6)$	$b_{01}^{-}\left[M_{\pi}^{-4}\right]$	$0.21(2)$
$b_{00}^{+}\left[M_{\pi}^{-3}\right]$	$-3.45(7)$		

$$
\begin{gathered}
T^{I}(\nu, t)=\bar{u}\left(p^{\prime}\right)\left\{D^{I}(\nu, t)-\frac{\left[\phi^{\prime}, \phi\right]}{4 m_{N}} B^{I}(\nu, t)\right\} u(p) \\
\bar{D}^{ \pm}(\nu, t)=\binom{1}{\nu} \sum_{n, m=0}^{\infty} d_{m n}^{ \pm} \nu^{2 m} t^{n} \\
\bar{B}^{ \pm}(\nu, t)=\binom{\nu}{1} \sum_{n, m=0}^{\infty} b_{m n}^{ \pm} \nu^{2 m} t^{n}
\end{gathered}
$$

Hoferichter, Ruiz de Elvira, Kubis,
Meißner - Phys.Rev.Lett. 115 (2015)

RS analysis

$d_{00}^{+}\left[M_{\pi}^{-1}\right]$	$-1.36(3)$	$d_{00}^{-}\left[M_{\pi}^{-2}\right]$	$1.41(1)$
$d_{10}^{+}\left[M_{\pi}^{-3}\right]$	$1.16(2)$	$d_{10}^{-}\left[M_{\pi}^{-4}\right]$	$-0.159(4)$
$d_{01}^{+}\left[M_{\pi}^{-3}\right]$	$1.16(2)$	$d_{01}^{-}\left[M_{\pi}^{-4}\right]$	$-0.141(5)$
$d_{20}^{+}\left[M_{\pi}^{-5}\right]$	$0.196(3)$	$b_{00}^{-}\left[M_{\pi}^{-2}\right]$	$10.49(11)$
$d_{11}^{+}\left[M_{\pi}^{-5}\right]$	$0.185(3)$	$b_{10}^{-}\left[M_{\pi}^{-4}\right]$	$1.00(3)$
$d_{02}^{+}\left[M_{\pi}^{-5}\right]$	$0.0336(6)$	$b_{01}^{-}\left[M_{\pi}^{-4}\right]$	$0.21(2)$
$b_{00}^{+}\left[M_{\pi}^{-3}\right]$	$-3.45(7)$		

$$
T^{I}(\nu, t)=\bar{u}\left(p^{\prime}\right)\left\{D^{I}(\nu, t)-\frac{\left[q^{\prime}, \phi\right]}{4 m_{N}} B^{I}(\nu, t)\right\} u(p)
$$

$$
\begin{aligned}
& \bar{D}^{ \pm}(\nu, t)=\binom{1}{\nu} \sum_{n, m=0}^{\infty} d_{m n}^{ \pm} \nu^{2 m} t^{n} \\
& \bar{B}^{ \pm}(\nu, t)=\binom{\nu}{1} \sum_{n, m=0}^{\infty} b_{m n}^{ \pm} \nu^{2 m} t^{n}
\end{aligned}
$$

Hoferichter, Ruiz de Elvira, Kubis,
Meißner - Phys.Rev.Lett. 115 (2015)

$$
h_{A}=1.40 \pm 0.05 \quad g_{1}=b_{4}=b_{5}=0 \pm 3
$$

$\mathrm{N}^{3} \mathrm{LO}$	Q^{4}	ε^{4}	Q^{4}	ε^{4}	Q^{4}	
c_{1}	$-1.11(3)$	$-1.11(3)$	$-1.11(3)$	$-1.11(3)$	$-1.12(3)$	$-1.10(3)$
c_{2}	$3.61(4)$	$1.41(38)$	$3.17(3)$	$1.28(20)$	$3.35(3)$	$1.16(20)$
c_{3}	$-5.60(6)$	$-1.88(45)$	$-5.67(6)$	$-2.04(39)$	$-5.70(6)$	$-2.10(39)$
c_{4}	$4.26(4)$	$2.03(28)$	$4.35(4)$	$2.07(29)$	$3.97(3)$	$1.91(27)$
d_{1+2}	$6.37(9)$	$1.78(31)$	$7.66(9)$	$2.90(30)$	$4.70(7)$	$1.78(24)$
d_{3}	$-9.18(9)$	$-3.64(36)$	$-10.77(10)$	$-5.91(50)$	$-5.26(5)$	$-3.25(14)$
d_{5}	$0.87(5)$	$1.52(7)$	$0.59(5)$	$1.03(7)$	$0.31(5)$	$0.66(6)$
d_{14-15}	$-12.56(12)$	$-4.38(54)$	$-13.44(12)$	$-5.17(55)$	$-8.84(10)$	$-3.41(41)$
e_{14}	$1.16(4)$	$1.64(10)$	$0.85(4)$	$1.12(16)$	$1.17(4)$	$1.28(11)$
e_{15}	$-2.26(6)$	$-4.95(15)$	$-0.83(6)$	$-3.30(25)$	$-2.58(7)$	$-3.07(13)$
e_{16}	$-0.29(3)$	$4.21(16)$	$-2.75(3)$	$1.92(43)$	$-1.77(3)$	$1.71(17)$
e_{17}	$-0.17(6)$	$-0.44(6)$	$0.03(6)$	$-0.39(7)$	$-0.45(6)$	$-0.51(7)$
e_{18}	$-3.47(5)$	$1.34(29)$	$-4.48(5)$	$0.67(31)$	$-1.68(5)$	$1.30(17)$

$\mathrm{N}^{3} \mathrm{LO}$	Q^{4}	ε^{4}	Q^{4}	ε^{4}	Q^{4}	ε^{4}	RS
$a_{0+}^{+}\left[M_{\pi}^{-1} 10^{-3}\right]$	-1.5	$-1.5(8.5)$	-8.0	$1.2(20.4)$	-5.7	$-0.8(10.3)$	$-0.9(1.4)$
$a_{0+}^{-}\left[M_{\pi}^{-1} 10^{-3}\right]$	68.5	$96.3(2.0)$	58.6	$70.0(3.3)$	83.8	$83.6(1.9)$	$85.4(9)$
$a_{1+}^{+}\left[M_{\pi}^{-3} 10^{-3}\right]$	134.3	$136.0(9.7)$	132.1	$135.2(8.7)$	128.0	$132.7(9.0)$	$131.2(1.7)$
$a_{1+}^{-}\left[M_{\pi}^{-3} 10^{-3}\right]$	-80.9	$-80.0(3.4)$	-90.1	$-86.4(2.7)$	-78.1	$-81.1(3.6)$	$-80.3(1.1)$
$a_{1-}^{+}\left[M_{\pi}^{-3} 10^{-3}\right]$	-55.7	$-47.5(10.5)$	-73.7	$-56.9(7.1)$	-53.5	$-51.4(7.9)$	$-50.9(1.9)$
$a_{1-}^{-}\left[M_{\pi}^{-3} 10^{-3}\right]$	-10.0	$-5.6(4.9)$	-23.7	$-14.4(6.5)$	-11.8	$-10.4(5.7)$	$-9.9(1.2)$
$b_{0+}^{+}\left[M_{\pi}^{-3} 10^{-3}\right]$	-42.2	$-31.4(8.1)$	-44.5	$-32.6(21.3)$	-54.7	$-33.9(8.5)$	$-45.0(1.0)$
$b_{0+}^{-}\left[M_{\pi}^{-3} 10^{-3}\right]$	-31.6	$7.1(2.3)$	-65.2	$-34.1(5.7)$	2.3	$2.9(2.1)$	$4.9(8)$

S-Waves Stat. Drror

P-Waves stat. Error

D-Waves Stat. Error

F-Waves Stat. Drror

Hellmann-Feynman theorem

$$
\sigma_{\pi N}=M_{\pi}^{2} \frac{\partial m_{N}}{\partial M_{\pi}^{2}}
$$

$\sigma_{\pi N}[\mathrm{MeV}]$	
Q^{2}	ε^{2}
57.8 ± 1.9	53.7 ± 1.9
Q^{3}	ε^{3}
58.3 ± 1.9	60.7 ± 3.3
Q^{4}	ε^{4}
$64.9-0.8 e_{1} \pm 2.0$	$63.9-0.8 e_{1} \pm 2.1$

$$
\sigma_{\pi N}=(59.1 \pm 3.5) \mathrm{MeV}
$$

Thank You !

Backup

LECs	$1 / m_{N}$	d_{00}^{+}	d_{10}^{+}	d_{01}^{+}	d_{20}^{+}	d_{11}^{+}	d_{02}^{+}	b_{00}^{+}	d_{00}^{-}	d_{10}^{-}	d_{01}^{-}	b_{00}^{-}	b_{10}^{-}	b_{01}^{-}	
HB	Q^{4}	-0.48	-0.67	0.70	1.30	0.80	0.052	-1.44	0.71	0.77	-0.06	6.67	6.29	0.47	
Cov															

| LECs | $1 / m_{N}$ | d_{00}^{+} | d_{10}^{+} | d_{01}^{+} | d_{20}^{+} | d_{11}^{+} | d_{02}^{+} | b_{00}^{+} | d_{00}^{-} | d_{10}^{-} | d_{01}^{-} | b_{00}^{-} | b_{10}^{-} | b_{01}^{-} |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| HB | Q^{4} | -0.48 | -0.67 | 0.70 | 1.30 | 0.80 | 0.052 | -1.44 | 0.71 | 0.77 | -0.06 | 6.67 | 6.29 | 0.47 |
| Cov | Q^{4} | -1.19 | 0.69 | 0.95 | 0.66 | 0.51 | 0.003 | -1.85 | 0.92 | 0.50 | -0.04 | 6.50 | 5.62 | 0.53 |
| | | | | | | | | | | | | | | |
| Cov | All | -1.22 | 0.75 | 0.97 | 0.54 | 0.43 | -0.004 | -6.05 | 1.40 | -0.21 | -0.25 | 8.03 | 4.13 | 0.38 |
| RS | | -1.36 | 1.16 | 1.16 | 0.20 | 0.18 | 0.034 | -3.45 | 1.41 | -0.16 | -0.14 | 10.49 | 1.00 | 0.21 |

LECs	$1 / m_{N}$	d_{00}^{+}	d_{10}^{+}	d_{01}^{+}	d_{20}^{+}	d_{11}^{+}	d_{02}^{+}	b_{00}^{+}	d_{00}^{-}	d_{10}^{-}	d_{01}^{-}	b_{00}^{-}	b_{10}^{-}	b_{01}^{-}
HB	Q^{4}	-0.48	-0.67	0.70	1.30	0.80	0.052	-1.44	0.71	0.77	-0.06	6.67	6.29	0.47
	Q^{4}	-1.19	0.69	0.95	0.66	0.51	0.003	-1.85	0.92	0.50	-0.04	6.50	5.62	0.53
Cov	Q^{5}	-1.22	0.73	0.98	0.52	0.38	-0.004	-5.05	1.24	0.21	-0.17	8.49	3.30	0.29
	Q^{6}	-1.21	0.72	0.97	0.59	0.42	-0.005	-6.24	1.43	-0.33	-0.27	8.06	3.91	0.36
	Q^{7}	-1.22	0.75	0.97	0.53	0.43	-0.004	-5.96	1.38	-0.19	-0.25	8.00	4.23	0.39
Cov	All	-1.22	0.75	0.97	0.54	0.43	-0.004	-6.05	1.40	-0.21	-0.25	8.03	4.13	0.38
RS		-1.36	1.16	1.16	0.20	0.18	0.034	-3.45	1.41	-0.16	-0.14	10.49	1.00	0.21

odd powers in M_{π} enhanced by
π

even powers in M_{π}

 enhanced by$\ln \left(M_{\pi}^{2} / m_{N}^{2}\right)$
$\arctan \left(M_{\pi} / m_{N}\right)$

