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Theoretical description of πN→πN and πN→ππN above threshold

Effective Field Theory ⇒ Chiral Perturbation Theory

QCD is non-perturbative for low energies

Aim

Problem I

Solution I

Problem II Resonances play an important role

Solution II Inclusion of the most dominant resonance Δ(1232)  
as an explicit degree of freedom

Chiral Approaches
BχPT 

• EFT of Standard Model 
• Relies upon chiral symmetry of QCD 
• DOF are mesons and baryons instead of quarks 
• Breakdown scale of theory:              test test test 

HBχPT 
• Non-relativistic limit of χPT 
• Inclusion of             expansion into power counting 
• HB-πN :                            HB-NN :  
• Original motivation: calculations beyond tree-level

1.2. E�ective Field Theory

1.2.2. ‰PT and HB‰PT for Nucleons

The baryons of interest are the two nucleons, proton p and neutron n, written in the isodoublet
representation

� =
A

p

n

B

(1.36)

with [5]
m

p

= 938.27 MeV , m

n

= 939.57 MeV . (1.37)

The construction of the most general pion-nucleon Lagrangian proceeds analogously to the purely
mesonic case. The baryon fields are introduced in a non-linear realization of the chiral group
and the most general chiral invariant Lagrangian is constructed based on a power counting .

The relativistic pion-nucleon Lagrangian at lowest orders is given by [10]
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where the pions are represented by u(fi) =


U(fi). With the chiral vielbein
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the covariant derivative is given by
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The relativistic nucleon propagator reads

G
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Note that the external axial and axial-vector sources v

µ

and a

µ

are set to zero and that the
nucleon mass m

N

and the axial coupling constant g

A

are taken in the chiral limit. From now
on, all terms including external sources will be left out.

The expansion in powers of momenta becomes problematic in the baryon sector since one of
the expansion parameters is of the order m

N

/�
‰

≥ O(1). The consequence is that there is
no direct relation between the number of loops and the chiral dimension of a given Feynman
diagram. The number of diagrams needed for a particular chiral order above tree level is thus
infinite. One possibility to solve this problem is the so-called HB‰PT, which was inspired by
the heavy quark physics and first proposed in [11] and [12]. The basic idea of HB‰PT is an
expansion of the amplitude around the extreme non-relativistic limit. This shifts the dependence
on the nucleon mass m

N

from the propagator to a series of new vertices, which are suppressed
by powers of 1/m

N

. Due to the fact that numerically m

N

ƒ �
‰

, a simultaneous expansion in
1/�

‰

and 1/m

N

is necessary.
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TABLE I: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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2. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of the transition matrix reads

T

abc = ū
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where the invariant amplitudes X 2 {A,B,C,D} depend on the five momenta k, k

0, q1,
q2, q3 and have the same isospin decomposition as in Eqs. (15) and (16). The unpolarized
matrix element squared is given by
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where x1, x2 and z are the cosines of the angles between q1 and q2, q1 and q3, and q2 and
q3, respectively.

3. Observables

The observables of interest are total and di↵erential cross sections, which are given by
integrating the matrix element squared over an appropriate phase space. The exact relations
for every cross section needed are quite lengthy and will not be presented here. The interested
reader is referred to [5].

III. POWER COUNTING AND RENORMALIZATION

In �PT, invariant amplitudes are calculated in the chiral expansion, with the expansion
parameter
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⇢
q

⇤
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where q denotes a Goldstone boson momenta and ⇤
�

⇠ 1 GeV. Since the nucleon mass
m

N

⇠ ⇤
�

does not vanish in the chiral limit, the power counting employed in the Goldstone
boson sector breaks down in the presence of baryons. The traditional way of curing this
problem is the HB approach [6, 7], where the nucleon mass is treated as an additional large
scale and an 1/m

N

expansion of the amplitudes is performed. This additional expansion
breaks Lorentz invariance. For certain observables, such as some of the nucleon and
electroweak and scalar form factors [8, 9], the HB expansion exhibits a very limited rage
of convergence. The modern way is to use the manifest Lorentz covariant approach either
in the method of infrared regularization (IR) [9] or in the extended on-mass shell scheme
(EOMS) [10, 11]. In this work, we will employ the HB and covariant EOMS approaches.

In both approaches, the e↵ective Lagrangian needed to describe pion-nucleon dynamics
at one-loop level consists of the following pieces (see Ref. [12] for a full list of terms)

Le↵ = L(2)
⇡⇡

+ L(4)
⇡⇡

+ L(1)
⇡N

+ L(2)
⇡N

+ L(3)
⇡N

+ L(4)
⇡N

, (21)

4χP
T

HBχ
PT

I. TEST

LECs 1/m
N

d+00 d+10 d+01 d+20 d+11 d+02 b+00 d�00 d�10 d�01 b�00 b�10 b�01
HB Q4 -0.48 -0.67 0.70 1.30 0.80 0.052 -1.44 0.71 0.77 -0.06 6.67 6.29 0.47

Cov

Cov All -1.22 0.75 0.97 0.54 0.43 -0.004 -6.05 1.40 -0.21 -0.25 8.03 4.13 0.38

RS -1.36 1.16 1.16 0.20 0.18 0.034 -3.45 1.41 -0.16 -0.14 10.49 1.00 0.21

LECs 1/m
N

d+00 d+10 d+01 d+20 d+11 d+02 b+00 d�00 d�10 d�01 b�00 b�10 b�01
HB Q4 -0.48 -0.67 0.70 1.30 0.80 0.052 -1.44 0.71 0.77 -0.06 6.67 6.29 0.47

Cov

Q4 -1.19 0.69 0.95 0.66 0.51 0.003 -1.85 0.92 0.50 -0.04 6.50 5.62 0.53

Cov All -1.22 0.75 0.97 0.54 0.43 -0.004 -6.05 1.40 -0.21 -0.25 8.03 4.13 0.38

RS -1.36 1.16 1.16 0.20 0.18 0.034 -3.45 1.41 -0.16 -0.14 10.49 1.00 0.21

LECs 1/m
N

d+00 d+10 d+01 d+20 d+11 d+02 b+00 d�00 d�10 d�01 b�00 b�10 b�01
HB Q4 -0.48 -0.67 0.70 1.30 0.80 0.052 -1.44 0.71 0.77 -0.06 6.67 6.29 0.47

Cov

Q4 -1.19 0.69 0.95 0.66 0.51 0.003 -1.85 0.92 0.50 -0.04 6.50 5.62 0.53

Q5 -1.22 0.73 0.98 0.52 0.38 -0.004 -5.05 1.24 0.21 -0.17 8.49 3.30 0.29

Q6 -1.21 0.72 0.97 0.59 0.42 -0.005 -6.24 1.43 -0.33 -0.27 8.06 3.91 0.36

Q7 -1.22 0.75 0.97 0.53 0.43 -0.004 -5.96 1.38 -0.19 -0.25 8.00 4.23 0.39

Cov All -1.22 0.75 0.97 0.54 0.43 -0.004 -6.05 1.40 -0.21 -0.25 8.03 4.13 0.38

RS -1.36 1.16 1.16 0.20 0.18 0.034 -3.45 1.41 -0.16 -0.14 10.49 1.00 0.21

T
⇡

< {50, 75, 100, 125, 150} MeV b= {1035, 1368, 1704, 1854, 2177} data points

Q =

⇢
q

⇤

b

,
M

⇡

⇤

b

�
(1)

⇤

b

= 600MeV (2)

Q =

!CMS

⇤

b

(3)

Oexp

i

, �Oexp

i

, N
i

(4)

q/m
N

⇠ (q/⇤
b

)

2
(5)

1



 BχPT & HBχPT

 Effective Lagrangian

Exam
ples

A.2. HB‰PT

Vertices from L(2)

fi�

p

q

1

p

Õj, ‹ i, µ

a

0

A.2. HB‰PT

Vertices from L̂(1)

fiN

k

i
v · k + i0

q

1

a

≠g

A

F

fi

S · q

1

·

a

q

2

q

1

a b

1
4F

2

fi

v · (q
1

+ q

2

) ‘

abc

·

c

q

2

q

3

q

1

a

b

c

g

A

2F

3

fi

1
·

a

”

bc

S · (q
2

+ q

3

)

+ ·

b

”

ac

S · (≠q

1

+ q

3

)

+ ·

c

”

ab

S · (≠q

1

+ q

2

)
2

91

A.2. HB‰PT

Vertices from L(2)

fi�

p

q

1

p

Õj, ‹ i, µ

a

0

A.2. HB‰PT

Vertices from L̂(1)

fiN

k

i
v · k + i0

q

1

a

≠g

A

F

fi

S · q

1

·

a

q

2

q

1

a b

1
4F

2

fi

v · (q
1

+ q

2

) ‘

abc

·

c

q

2

q

3

q

1

a

b

c

g

A

2F

3

fi

1
·

a

”

bc

S · (q
2

+ q

3

)

+ ·

b

”

ac

S · (≠q

1

+ q

3

)

+ ·

c

”

ab

S · (≠q

1

+ q

2

)
2

91

A. Feynman Rules
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2. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of the transition matrix reads
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where the invariant amplitudes X 2 {A,B,C,D} depend on the five momenta k, k

0, q1,
q2, q3 and have the same isospin decomposition as in Eqs. (15) and (16). The unpolarized
matrix element squared is given by
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where x1, x2 and z are the cosines of the angles between q1 and q2, q1 and q3, and q2 and
q3, respectively.

3. Observables

The observables of interest are total and di↵erential cross sections, which are given by
integrating the matrix element squared over an appropriate phase space. The exact relations
for every cross section needed are quite lengthy and will not be presented here. The interested
reader is referred to [5].

III. POWER COUNTING AND RENORMALIZATION

In �PT, invariant amplitudes are calculated in the chiral expansion, with the expansion
parameter
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where q denotes a Goldstone boson momenta and ⇤
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⇠ 1 GeV. Since the nucleon mass
m

N
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does not vanish in the chiral limit, the power counting employed in the Goldstone
boson sector breaks down in the presence of baryons. The traditional way of curing this
problem is the HB approach [6, 7], where the nucleon mass is treated as an additional large
scale and an 1/m

N

expansion of the amplitudes is performed. This additional expansion
breaks Lorentz invariance. For certain observables, such as some of the nucleon and
electroweak and scalar form factors [8, 9], the HB expansion exhibits a very limited rage
of convergence. The modern way is to use the manifest Lorentz covariant approach either
in the method of infrared regularization (IR) [9] or in the extended on-mass shell scheme
(EOMS) [10, 11]. In this work, we will employ the HB and covariant EOMS approaches.

In both approaches, the e↵ective Lagrangian needed to describe pion-nucleon dynamics
at one-loop level consists of the following pieces (see Ref. [12] for a full list of terms)
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2. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of the transition matrix reads

T

abc = ū

(s0)
v

�
S · q1 Aabc + S · q2 Babc + S · q3 Cabc + i✏
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, (18)

where the invariant amplitudes X 2 {A,B,C,D} depend on the five momenta k, k

0, q1,
q2, q3 and have the same isospin decomposition as in Eqs. (15) and (16). The unpolarized
matrix element squared is given by

|M|2 =
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(19)

where x1, x2 and z are the cosines of the angles between q1 and q2, q1 and q3, and q2 and
q3, respectively.

3. Observables

The observables of interest are total and di↵erential cross sections, which are given by
integrating the matrix element squared over an appropriate phase space. The exact relations
for every cross section needed are quite lengthy and will not be presented here. The interested
reader is referred to [5].

III. POWER COUNTING AND RENORMALIZATION

In �PT, invariant amplitudes are calculated in the chiral expansion, with the expansion
parameter

Q =

⇢
q

⇤
�

,

M

⇡

⇤
�

�
, (20)

where q denotes a Goldstone boson momenta and ⇤
�

⇠ 1 GeV. Since the nucleon mass
m

N

⇠ ⇤
�

does not vanish in the chiral limit, the power counting employed in the Goldstone
boson sector breaks down in the presence of baryons. The traditional way of curing this
problem is the HB approach [6, 7], where the nucleon mass is treated as an additional large
scale and an 1/m

N

expansion of the amplitudes is performed. This additional expansion
breaks Lorentz invariance. For certain observables, such as some of the nucleon and
electroweak and scalar form factors [8, 9], the HB expansion exhibits a very limited rage
of convergence. The modern way is to use the manifest Lorentz covariant approach either
in the method of infrared regularization (IR) [9] or in the extended on-mass shell scheme
(EOMS) [10, 11]. In this work, we will employ the HB and covariant EOMS approaches.

In both approaches, the e↵ective Lagrangian needed to describe pion-nucleon dynamics
at one-loop level consists of the following pieces (see Ref. [12] for a full list of terms)
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+ L(4)
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A. Feynman Rules
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2. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of the transition matrix reads

T

abc = ū
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, (18)

where the invariant amplitudes X 2 {A,B,C,D} depend on the five momenta k, k

0, q1,
q2, q3 and have the same isospin decomposition as in Eqs. (15) and (16). The unpolarized
matrix element squared is given by
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where x1, x2 and z are the cosines of the angles between q1 and q2, q1 and q3, and q2 and
q3, respectively.

3. Observables

The observables of interest are total and di↵erential cross sections, which are given by
integrating the matrix element squared over an appropriate phase space. The exact relations
for every cross section needed are quite lengthy and will not be presented here. The interested
reader is referred to [5].

III. POWER COUNTING AND RENORMALIZATION

In �PT, invariant amplitudes are calculated in the chiral expansion, with the expansion
parameter

Q =
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q
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,
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, (20)

where q denotes a Goldstone boson momenta and ⇤
�

⇠ 1 GeV. Since the nucleon mass
m

N

⇠ ⇤
�

does not vanish in the chiral limit, the power counting employed in the Goldstone
boson sector breaks down in the presence of baryons. The traditional way of curing this
problem is the HB approach [6, 7], where the nucleon mass is treated as an additional large
scale and an 1/m

N

expansion of the amplitudes is performed. This additional expansion
breaks Lorentz invariance. For certain observables, such as some of the nucleon and
electroweak and scalar form factors [8, 9], the HB expansion exhibits a very limited rage
of convergence. The modern way is to use the manifest Lorentz covariant approach either
in the method of infrared regularization (IR) [9] or in the extended on-mass shell scheme
(EOMS) [10, 11]. In this work, we will employ the HB and covariant EOMS approaches.

In both approaches, the e↵ective Lagrangian needed to describe pion-nucleon dynamics
at one-loop level consists of the following pieces (see Ref. [12] for a full list of terms)
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FIG. 4: Leading-order � pole diagram.
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2. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of the transition matrix reads

T

abc = ū

(s0)
v

�
S · q1 Aabc + S · q2 Babc + S · q3 Cabc + i✏

µ⌫↵�

q

µ

1 q
⌫

2q
↵

3 v
�

D

abc

�
u

(s)
v

, (18)

where the invariant amplitudes X 2 {A,B,C,D} depend on the five momenta k, k

0, q1,
q2, q3 and have the same isospin decomposition as in Eqs. (15) and (16). The unpolarized
matrix element squared is given by

|M|2 =
1

4

h
|A|2q2

1 + |B|2q2
2 + |C|2q2

3 + (A⇤

B + AB
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⇤)q1 · q3

+ (B⇤
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⇤)q2 · q3 + 4|D|2q2
1q

2
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2
2)

⌘i
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(19)

where x1, x2 and z are the cosines of the angles between q1 and q2, q1 and q3, and q2 and
q3, respectively.

3. Observables

The observables of interest are total and di↵erential cross sections, which are given by
integrating the matrix element squared over an appropriate phase space. The exact relations
for every cross section needed are quite lengthy and will not be presented here. The interested
reader is referred to [5].

III. POWER COUNTING AND RENORMALIZATION

In �PT, invariant amplitudes are calculated in the chiral expansion, with the expansion
parameter

Q =

⇢
q

⇤
�

,

M

⇡

⇤
�

�
, (20)

where q denotes a Goldstone boson momenta and ⇤
�

⇠ 1 GeV. Since the nucleon mass
m

N

⇠ ⇤
�

does not vanish in the chiral limit, the power counting employed in the Goldstone
boson sector breaks down in the presence of baryons. The traditional way of curing this
problem is the HB approach [6, 7], where the nucleon mass is treated as an additional large
scale and an 1/m

N

expansion of the amplitudes is performed. This additional expansion
breaks Lorentz invariance. For certain observables, such as some of the nucleon and
electroweak and scalar form factors [8, 9], the HB expansion exhibits a very limited rage
of convergence. The modern way is to use the manifest Lorentz covariant approach either
in the method of infrared regularization (IR) [9] or in the extended on-mass shell scheme
(EOMS) [10, 11]. In this work, we will employ the HB and covariant EOMS approaches.

In both approaches, the e↵ective Lagrangian needed to describe pion-nucleon dynamics
at one-loop level consists of the following pieces (see Ref. [12] for a full list of terms)

Le↵ = L(2)
⇡⇡

+ L(4)
⇡⇡

+ L(1)
⇡N

+ L(2)
⇡N

+ L(3)
⇡N

+ L(4)
⇡N

, (21)
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FIG. 4: Leading-order � pole diagram.
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2. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of the transition matrix reads

T

abc = ū

(s0)
v

�
S · q1 Aabc + S · q2 Babc + S · q3 Cabc + i✏

µ⌫↵�

q

µ

1 q
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2q
↵

3 v
�

D

abc

�
u

(s)
v

, (18)

where the invariant amplitudes X 2 {A,B,C,D} depend on the five momenta k, k

0, q1,
q2, q3 and have the same isospin decomposition as in Eqs. (15) and (16). The unpolarized
matrix element squared is given by

|M|2 =
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4
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(19)

where x1, x2 and z are the cosines of the angles between q1 and q2, q1 and q3, and q2 and
q3, respectively.

3. Observables

The observables of interest are total and di↵erential cross sections, which are given by
integrating the matrix element squared over an appropriate phase space. The exact relations
for every cross section needed are quite lengthy and will not be presented here. The interested
reader is referred to [5].

III. POWER COUNTING AND RENORMALIZATION

In �PT, invariant amplitudes are calculated in the chiral expansion, with the expansion
parameter

Q =

⇢
q

⇤
�

,

M

⇡

⇤
�

�
, (20)

where q denotes a Goldstone boson momenta and ⇤
�

⇠ 1 GeV. Since the nucleon mass
m

N

⇠ ⇤
�

does not vanish in the chiral limit, the power counting employed in the Goldstone
boson sector breaks down in the presence of baryons. The traditional way of curing this
problem is the HB approach [6, 7], where the nucleon mass is treated as an additional large
scale and an 1/m

N

expansion of the amplitudes is performed. This additional expansion
breaks Lorentz invariance. For certain observables, such as some of the nucleon and
electroweak and scalar form factors [8, 9], the HB expansion exhibits a very limited rage
of convergence. The modern way is to use the manifest Lorentz covariant approach either
in the method of infrared regularization (IR) [9] or in the extended on-mass shell scheme
(EOMS) [10, 11]. In this work, we will employ the HB and covariant EOMS approaches.

In both approaches, the e↵ective Lagrangian needed to describe pion-nucleon dynamics
at one-loop level consists of the following pieces (see Ref. [12] for a full list of terms)
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, (21)
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FIG. 3: Transition from leading to next-to-leading order loop graphs.
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FIG. 4: Leading-order � pole diagram.
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FIG. 4: Leading-order � pole diagram.
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Appendix A: Renormalization Rules

In this appendix, the formulae related to the renormalization of the amplitudes are given.
The notation for the integrals is the following
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where the +i✏ prescription was supressed.

1. Mesonic Sector

The renormalization rules for the pion mass, Z-factor and decay constant read
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2. Baryonic sector

In the baryonic sector one has to di↵erentiate between the covariant and heavy baryon
approach. The self-energy diagrams necessary for mass renormalization are shown in Fig.
1. The axial coupling constant was renormalized at the pion-nucleon vertex and the con-
tributing diagrams are shown in Fig. 2.
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a. Covariant chiral perturbation theory
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Axial-coupling constant

The e↵ective axial coupling constant is renormalized via
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b. Heavy-baryon chiral perturbation theory

The HB expression for the nucleon mass reads
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where the superscripts refer to the chiral dimension.

But, before discussing the renormalization of the ⇡N ! ⇡N and ⇡N ! ⇡⇡N amplitudes,
we need to express the bare quantities in the leading-order Lagrangian by physical ones. The
expressions for m

N

and g

A

for both chiral approaches are given in Appendix A. Note that
the axial coupling g

A

is renormalized at the ⇡N -vertex such that in our amplitudes we use
an e↵ective value for g

A

g

eff

A

= g

A

� 2M2
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d18 + O(Q5) (22)

which is fixed by the Goldberger-Treiman relation

g
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F
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A

� 2M2
⇡

d18 + O(Q5) , (23)

where for g
⇡NN

we adopt the value from Ref. [13] , g
⇡NN

/(4⇡) ' 13.54. The first advantage
of this kind of renormalization is that one gets rid o↵ d18, at least in ⇡N scattering. The
second advantage is that one gets the correct analytic structure of the ⇡N ! ⇡N and
⇡N ! ⇡⇡N amplitudes up to higher orders.

The tree level diagrams for ⇡N ! ⇡⇡N to order Q4 are presented in Fig. 3. The leading
order loop diagrams are shown in Figs. 4 and 5. The next-to-leading order loop diagrams
are not shown here, but can easily be generated by increasing, one by one, the order of
the insertion at every ⇡N -vertex with an even number of pions (see Fig.6). ⇡N -vertices

with an odd number of pions vanish in L(2)
⇡N

We will also not show here the ⇡N -scattering
graphs, but these can easily be figured out by observing that ⇡N ! ⇡N is a subprocess of
⇡N ! ⇡⇡N (see Fig. 7).

The leading order tree diagrams are constructed solely from the lowest-order vertices and
thus depend only on the well-known LECs F

⇡

and g

A

. The higher order tree graphs involve
insertions of the LECs c

i

from L(2)
⇡N

, d
i

from L(3)
⇡N

, e
i

from L(4)
⇡N

and the purely mesonic LECs

l

i

from L(4)
⇡⇡

, which are known from ⇡⇡-scattering. Due to linear combinations between c

i

and some e

i

, we make the following redifinitions

c1 ! c1 + 2M2
⇡

(e22 � 4e38) ,

c2 ! c2 � 8M2
⇡

(e20 + e35) ,

c3 ! c3 � 4M2
⇡

(2e19 � e22 � e36) ,

c4 ! c4 � 4M2
⇡

(2e21 � e37) .

(24)

Finally, the ⇡N -scattering amplitudes depend on the LECs c1,2,3,4, d1+2,3,5,14�15 and
e14,15,16,17,18. The ⇡N ! ⇡⇡N amplitudes depend, in general, on the same LECs, but due to
crossing symmetries the contributions proportional to the LECs e14,15,16 count as of order
Q

5 and thus are set to zero for this reaction. There are also additional LECs due to the
⇡N -vertices with three pions, namely d4,10,11,12,13,16,18 and e10,11,12,13,34. Note that the LECs
d4 and e11,12,13,34 only appear in the amplitudes X

4 and thus only contribute to channel IV
and V. The other LECs contribute to all channels and all partial waves, respectively. We
also neglect the LEC e35 which appears in the Q

4 amplitudes of both reactions, but which
contributions count as of order Q5.
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Appendix A: Renormalization Rules

In this appendix, the formulae related to the renormalization of the amplitudes are given.
The notation for the integrals is the following
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where the +i✏ prescription was supressed.

1. Mesonic Sector

The renormalization rules for the pion mass, Z-factor and decay constant read
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2. Baryonic sector

In the baryonic sector one has to di↵erentiate between the covariant and heavy baryon
approach. The self-energy diagrams necessary for mass renormalization are shown in Fig.
1. The axial coupling constant was renormalized at the pion-nucleon vertex and the con-
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Linear Combinations

GTR

I. TEST

c̄1 ! c̄1 + 2M2
⇡

(ē22 � 4ē38 + c̄1�l3
¯l3/(32⇡

2F 2
⇡

))

c̄2 ! c̄2 � 8M2
⇡

(ē20 + ē35)

c̄3 ! c̄3 � 4M2
⇡

(2ē19 � ē22 � ē36)

c̄4 ! c̄4 � 4M2
⇡

(2ē21 � ē37)

(1)

1



 Renormalization II

HB approachMeson Sector

Covariant “modified“ EOMS scheme

The renormalization of the LECs in the HB formalism can be performed order-by-order
like in the meson sector, where we have
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For our purpose we need to absorb UV divergent pieces at order Q

3 and Q

4 into d

i

and e

i

,
respectively. We therefore define the renormalized LECs via
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where the � functions are given in Appendix B.

In the covariant approach, the renormalization of the LECs in the EOMS scheme is more
tedious. Loop graphs contribute to every chiral order and thus cause a power counting
problem. The basic idea of EOMS to resolve this issue is based on the observation that
the power counting breaking terms (PCBT) stemming from the loop graphs are analytic
in the pion mass and momenta and thus can be absorbed into LECs of the most general
Lagrangian. For our purpose we need to consider the PCBT from the loop graphs of order
Q

3 and Q

4 in the naive counting. After renormalization of the leading order couplings m

N

and g

A

, the PCBT start to appear at order Q

2. Therefore, we normalize the LECs in the
EOMS scheme as follows
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The notation is the following, x̄

(n)
i,f

denotes the finite analytic parts from loops of naive

order n. �

(n)
xi,B

and �

(n)
xi,M

denote the � functions which cancel baryonic and mesonic
tadpoles, respectively. For practical uses we made in the last line the indentifications
�

(n)
xi = �

(n)
xi,B

+ �

(n)
xi,M

and �

xi = �

(n)
xi,M

, with �

xi from Eq. (26).

We determined the finite and UV divergent pieces in the following way. First of all,
we changed the spin basis for both processes such that every spin structure fullfills power
counting by itself. In ⇡N ! ⇡N the better suited basis is

T

± = ū

(s0)

✓
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/
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(ē20 + ē35)
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c̄3 ! c̄3 � 4M2
⇡
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this chapter, we employ the e↵ective axial vector coupling constant g
A

by taking into account
the Goldberger-Treiman discrepancy, such that it is related to the physical axial vector coupling
g
A,ph

via
g
A

= g
A,ph

� 2M2
⇡

d18 + O(Q5) . (3.38)

The value of the e↵ective coupling g
A

is fixed by the Goldberger-Treiman relation

g
A

=
g
⇡NN

F
⇡

m
N

, (3.39)

where we adopt for the pion-nucleon coupling constant g
⇡NN

the value g2
⇡NN

/4⇡ = 13.7(2) [101]
leading to g

A

= 1.289(1). Using the e↵ective coupling g
A

guarantees a correct reproduction of
the analytic structure of the ⇡N ! ⇡N scattering amplitude as well as removes the redundant
LEC d18 from the amplitude.

The tree-level diagrams relevant for ⇡N ! ⇡N to order Q4 are shown in Fig. 3.1, while
the leading-order loop diagrams are visualized in Fig. 3.2. Note that we do not show the
next-to-leading order loop diagrams explicitly, which can easily be generated as visualized in
Fig. 3.3. The idea is to replace one of the leading-order ⇡N -vertices with an even number of

pions by a subleading one from L(2)
⇡N

. Note that the chiral symmetry forbids ⇡N -vertices with

an odd number of pions in L(2)
⇡N

.

The tree-level diagrams at leading-order are constructed solely from the lowest-order vertices
such that they only depend on the well-known physical quantities F

⇡

and g
A

. The tree-level

graphs at higher order involve insertions of vertices with the LECs c
i

from L(2)
⇡N

, d
i

from L(3)
⇡N

,

e
i

from L(4)
⇡N

as well as the purely mesonic LECs l
i

from L(4)
⇡⇡

. In the ⇡N scattering amplitude,
some of the LECs e

i

only enter within linear combinations with the LECs c
i

. Thus, following
redefinitions on the level of the renormalized LECs discussed in the next paragraph are made
in order to get rid of the redundant ones [68]

c̄1 ! c̄1 + 2M2
⇡

(ē22 � 4ē38 + c̄1�
l3 l̄3/(32⇡2F 2

⇡

)) ,

c̄2 ! c̄2 � 8M2
⇡

(ē20 + ē35) ,

c̄3 ! c̄3 � 4M2
⇡

(2ē19 � ē22 � ē36) ,

c̄4 ! c̄4 � 4M2
⇡

(2ē21 � ē37) .

(3.40)

Such kind of redundancy is a general phenomenon in �PT. At su�ciently high orders, quark
mass renormalizations of certain lower-order LECs produce such kind of linear combinations of
LECs. Note that the linear combinations in Eq. (3.40) only hold for the 2⇡N̄N -vertex. Finally,
the ⇡N scattering amplitudes up to fourth order in the chiral counting depend on the LECs
c1,2,3,4, d1+2,3,5,14�15 and e14,15,16,17,18. Note that we neglect the LEC ē35, which is still present
in the covariant Q4 amplitudes after the redefinitions in Eq. (3.40), but which contribution
counts as of order Q5. Thus, the total number of LECs is 13, which is consistent with the most
general polynomial representation of the ⇡N scattering amplitude to fourth order in harmony
with charge, parity, time reversal, Lorentz, chiral and crossing symmetry [102].

In the HB formalism, one can perform an order-by-order renormalization of the LECs, which
is in complete analogy with the meson sector where, employing dimensional regularization, one
has
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 Phase Shifts

I. INTRODUCTION

II. BASIC DEFINITIONS

In this section, we want to give some basic definitions which are necessary for the de-
scription of ⇡N ! ⇡N and ⇡N ! ⇡⇡N . Throughout this work, the kinematical variables
are defined as follows:

⇡

a(q)N(p = m

N

v + k) ! ⇡

b(q0)N 0(p0 = m

N

v + k

0) , (1)

and
⇡

a(q1)N(p = m

N

v + k) ! ⇡

b(q2) ⇡
c(q3)N

0(p0 = m

N

v + k

0) , (2)

where N denotes a nucleon and ⇡

a a pion with the isospin quantum number a.

A. ⇡N ! ⇡N

In the case of ⇡N -scattering, we are interested in relating the T -matrix to phase shifts
for the two chiral approaches. In the covariant case we follow [1] and in the HB case we
follow [2].

1. Covariant chiral perturbation theory

In the covariant approach, the T -matrix can be decomposed in the following way

T
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�
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where
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(s) (4)

and the amplitudes A

± and B

± depend on the Mandelstam variables

s = (p + q)2 , t = (q � q

0)2 , u = (p0 � q)2 , s + t + u = 2m2
N

+ 2M2
⇡

. (5)

The partial wave amplitudes in terms of A± and B

± are given by
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The relation to the isospin basis is the same as in Eq. (8) with X 2 {g, h}.
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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 Experimental Data

I. TEST

mN M⇡ F⇡ gA

938.27 139.57 92.4 1.285

TABLE I: LECs from the pion-nucleon sector. The values are given in 1/GeV.

mN M⇡ F⇡ m� gA g⇡N�

938.27 139.57 92.4 1232 1.285 1.35

TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.

d�

d⌦
= |G|2 + |H|2 (1)

P
d�

d⌦
= 2 Im(GH⇤) (2)

Q3 c1 c2 c3 c4 d1 + d2 d3 d5 d14 � d15
HB-NN -1.26(2) 4.87(4) -7.28(2) 4.73(4) 2.91(5) -3.25(8) 0.20(5) -6.92(13)

HB-⇡N -1.60(2) 3.54(3) -6.62(2) 4.04(3) 4.05(4) -3.22(8) -0.40(4) -7.01(13)

Cov -1.44(2) 3.74(3) -6.54(3) 3.93(3) 3.73(5) -2.41(5) -0.67(4) -5.88(12)

TABLE III: LECs determined from combined fits at order Q3.
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Numerical results are presented for the electromagnetic corrections to the S- and P-wave phase shifts and
inelasticities in n+p and n p scattering. A discussion is given of how to apply the corrections in practical data
analysis.

INTRODUCTION

This paper presents our results on the electro-
magnetic corrections to the 8- and P-waves in
m'P scattering and m P elastic and charge-exchange
scattering. The corrections to the phase shifts
are obtained by the use of a dispersion-relation
method which has been developed in a series of
papers. ' ' The corrections to the inelasticities
are given by the unitarity equation. We give the
corrections due to the ny channel in n P scattering.
The present paper gives the results in tabular

form. For details concerning the derivation and
significance of these results we refer to Ref. 5.
In order to establish a "user's manual" for our
corrections we include detailed expressions for
the differential and total cross sections to which
the corrections are to be applied.
The simplest way to deal with the corrections

in a phase-shift analysis perhaps is to correct;
the data before the analysis is carried out. ' This
can be done by using the approximately known
phase shifts and inelasticities to calculate, e.g. ,
the differential cross section dv/dw twice, first
with the electromagnetic corrections (including
the Coulomb scattering and Coulomb-nuclear in-
terference terms) and then without any of these
corrections. The difference gives the correction
to the data. The corrected data can then be used
in a partial-wave analysis where all electromag-
netic effects are absent.
Qur corrections are determined in such a way

that the amplitudes derived from the corrected
data have the analyticity and unitarity properties
assumed for pure hadronic amplitudes. If our
corrections were complete, one would in addition
expect the amplitudes to be charge independent.
In particular, the isospin-& phase shifts in w'P
and m P scattering should come out equal. How-
ever, as discussed in Ref. 5 there may be signifi-
cant contributions from short- range electromag-
netic effects which have not so far been taken into

account in our calculations. We therefore sug-
gest that one should still distinguish between the
P33 phase shifts in n'p and n p scattering. Qne
may here use the fact that any remaining differ-
ence (due to short-range effects) between these
two phase shifts can be represented' by the form
sin'5 times a slowly varying function (5 being the
P„p haesshift).

NOTATION

We use the following notation.

s, t, u = usual Mandelstam variables for
nX nÃ.

M, p=nucleon mass (proton) and pion mass

q, 8= c.m. momentum and scattering angle.
W= s'~'= total c.m. energy.
E= (M'+q')'~'=n cleuon c.m. energy.
0, / = total and orbital angular momenta in wN.

8 —M —p, a 1
2qW v ' 137'

(v = lab relative velocity) .

E,(t) =pion form factor [E,(0) =1].
I'i~, E~= Dirac and Pauli proton form factors

[E~(0)= 1, 1+2ME~(0) = 2.79] .
f,g = no-flip and spin-flip amplitudes.

f„= pr atll-awaevamplitude (Z=l + 2) .

DIFFERENTIAL CROSS SECTION AND POLARIZATION

The general expressions for the mN-wN differ-
ential cross section and polarization are

used in PWAs of GW 

and KH
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 Fitting Procedure

Least Squares Fit

Several checks on the ⇡N ! ⇡N amplitudes have been performed. The renormalization
of m

N

, Z
N

and g

A

was checked by setting the internal nucleon line in the covariant (heavy
baryon) ⇡N amplitudes on-shell. An expansion around s = m

2
N

or u = m

2
N

(! = 0) showed
that only the leading order diagrams exhibit poles and thus giving the right analytic structure
of the amplitudes. Using the redefined LECs from Appendix B, the ⇡N ! ⇡N amplitudes
fullfill power-counting and are UV-finite up to order Q

3 and Q

4, respectively. Another
consistency check was done by using the same renormalization shifts in the amplitudes of
the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
counting and UV-finiteness by redefining only the new LECs appearing in ⇡N ! ⇡⇡N . In
Appendix B we list all LECs appearing in both reactions. The pion field was defined in the
most general form given by unitarity

U = 1 + i
⌧ ·⇡
F

⇡

� ⇡2

2F 2
⇡

� i↵
⇡2⌧ ·⇡
F

3
⇡

+
(8↵ � 1)

8F 4
⇡

⇡4 + . . . , (24)

and it was checked that the final renormalized amplitudes are independent of ↵. We checked
our amplitudes by comparing with the results of the group of Ref. [28]. Note there are a
couple of typos in that reference, thus we compared with the groups explicit results given
in a Mathematica notebook. To avoid the same problematic with typing large expressions
error-free, we prefer to give the amplitudes in a Mathematica notebook upon request.

Note that we have the isospin symmetric case in all our amplitudes, which means we take
m

p

= m

n

= m

N

and M

⇡

± = M

⇡

0 = M

⇡

. Only the electromagnetic corrections of Ref. [54]
take isospin-breaking e↵ects into account.

IV. FITTING PROCEDURE

The amplitudes for the reaction ⇡N ! ⇡N depend on several LECs as explained in
section III. Throughout this work, we use the following values for the various LECs and
masses entering the leading order e↵ective Lagrangian: M

⇡

= 139.57 MeV, F
⇡

= 92.4 MeV,
m

N

= 938.27 MeV. Note again that we use the more traditional value for F

⇡

, which is in
agreement with the latest determination of F

⇡

= 92.21(2)(14) [46]. All LECs should be
unterstood as renormalized quantities as discussed in the previous section.

All fits described below are performed to ⇡N ! ⇡N scattering data d�/d⌦, P in all
three channels simultaneously. In this least squares fit we minimize the quantity

�

2 =
X

i

 
Oexp
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O(n)
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�O
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!2
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i

=

q
(�Oexp

i

)2 + (�O(n)
i

)2 , (25)

where Oexp

i

, �Oexp

i

and N

i

are taken from the GWU-SAID data base [58] and O(n)
i

denotes
the observable calculated in �PT up to order n. The theoretical error takes into account the
uncertainty from the truncation of the chiral expansion at a given order and is estimated in
the way proposed in Ref. [51], namely

�O(n)
i

= max(|O(1)
i

|Qn

, {|O(k)
i

� O(j)
i

|Qn�j}) with j < k  n (26)

and Q = !

CMS

/⇤
b

, where !

CMS

denotes the energy of the incoming pion in the CMS
frame. In the Goldstone boson and single-baryon sectors, the breakdown scale of the chiral

8

Several checks on the ⇡N ! ⇡N amplitudes have been performed. The renormalization
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and g
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was checked by setting the internal nucleon line in the covariant (heavy
baryon) ⇡N amplitudes on-shell. An expansion around s = m

2
N

or u = m

2
N

(! = 0) showed
that only the leading order diagrams exhibit poles and thus giving the right analytic structure
of the amplitudes. Using the redefined LECs from Appendix B, the ⇡N ! ⇡N amplitudes
fullfill power-counting and are UV-finite up to order Q

3 and Q

4, respectively. Another
consistency check was done by using the same renormalization shifts in the amplitudes of
the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
counting and UV-finiteness by redefining only the new LECs appearing in ⇡N ! ⇡⇡N . In
Appendix B we list all LECs appearing in both reactions. The pion field was defined in the
most general form given by unitarity
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and it was checked that the final renormalized amplitudes are independent of ↵. We checked
our amplitudes by comparing with the results of the group of Ref. [28]. Note there are a
couple of typos in that reference, thus we compared with the groups explicit results given
in a Mathematica notebook. To avoid the same problematic with typing large expressions
error-free, we prefer to give the amplitudes in a Mathematica notebook upon request.

Note that we have the isospin symmetric case in all our amplitudes, which means we take
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and M
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⇡
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. Only the electromagnetic corrections of Ref. [54]
take isospin-breaking e↵ects into account.
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The amplitudes for the reaction ⇡N ! ⇡N depend on several LECs as explained in
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masses entering the leading order e↵ective Lagrangian: M
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= 139.57 MeV, F
⇡

= 92.4 MeV,
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= 938.27 MeV. Note again that we use the more traditional value for F

⇡

, which is in
agreement with the latest determination of F

⇡

= 92.21(2)(14) [46]. All LECs should be
unterstood as renormalized quantities as discussed in the previous section.

All fits described below are performed to ⇡N ! ⇡N scattering data d�/d⌦, P in all
three channels simultaneously. In this least squares fit we minimize the quantity
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TABLE I: LECs from the pion-nucleon sector. The values are given in 1/GeV.

m
N

M
⇡

F
⇡

m� g
A

g
⇡N�

938.27 139.57 92.4 1232 1.285 1.35

TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.

d�

d⌦
= |G|2 + |H|2 (9)

P
d�

d⌦
= 2 Im(GH⇤) (10)

Q3 c1 c2 c3 c4 d1 + d2 d3 d5 d14 � d15
HB-NN -1.26(2) 4.87(4) -7.28(2) 4.73(4) 2.91(5) -3.25(8) 0.20(5) -6.92(13)

HB-⇡N -1.60(2) 3.54(3) -6.62(2) 4.04(3) 4.05(4) -3.22(8) -0.40(4) -7.01(13)

Cov -1.44(2) 3.74(3) -6.54(3) 3.93(3) 3.73(5) -2.41(5) -0.67(4) -5.88(12)

TABLE III: LECs determined from combined fits at order Q3.
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 Fitting Procedure

Least Squares Fit

Several checks on the ⇡N ! ⇡N amplitudes have been performed. The renormalization
of m

N

, Z
N

and g

A

was checked by setting the internal nucleon line in the covariant (heavy
baryon) ⇡N amplitudes on-shell. An expansion around s = m

2
N

or u = m

2
N

(! = 0) showed
that only the leading order diagrams exhibit poles and thus giving the right analytic structure
of the amplitudes. Using the redefined LECs from Appendix B, the ⇡N ! ⇡N amplitudes
fullfill power-counting and are UV-finite up to order Q

3 and Q

4, respectively. Another
consistency check was done by using the same renormalization shifts in the amplitudes of
the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
counting and UV-finiteness by redefining only the new LECs appearing in ⇡N ! ⇡⇡N . In
Appendix B we list all LECs appearing in both reactions. The pion field was defined in the
most general form given by unitarity

U = 1 + i
⌧ ·⇡
F

⇡

� ⇡2

2F 2
⇡

� i↵
⇡2⌧ ·⇡
F

3
⇡

+
(8↵ � 1)

8F 4
⇡

⇡4 + . . . , (24)

and it was checked that the final renormalized amplitudes are independent of ↵. We checked
our amplitudes by comparing with the results of the group of Ref. [28]. Note there are a
couple of typos in that reference, thus we compared with the groups explicit results given
in a Mathematica notebook. To avoid the same problematic with typing large expressions
error-free, we prefer to give the amplitudes in a Mathematica notebook upon request.

Note that we have the isospin symmetric case in all our amplitudes, which means we take
m

p

= m

n

= m

N

and M

⇡

± = M

⇡

0 = M

⇡

. Only the electromagnetic corrections of Ref. [54]
take isospin-breaking e↵ects into account.

IV. FITTING PROCEDURE

The amplitudes for the reaction ⇡N ! ⇡N depend on several LECs as explained in
section III. Throughout this work, we use the following values for the various LECs and
masses entering the leading order e↵ective Lagrangian: M

⇡

= 139.57 MeV, F
⇡

= 92.4 MeV,
m

N

= 938.27 MeV. Note again that we use the more traditional value for F

⇡

, which is in
agreement with the latest determination of F

⇡

= 92.21(2)(14) [46]. All LECs should be
unterstood as renormalized quantities as discussed in the previous section.

All fits described below are performed to ⇡N ! ⇡N scattering data d�/d⌦, P in all
three channels simultaneously. In this least squares fit we minimize the quantity
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(! = 0) showed
that only the leading order diagrams exhibit poles and thus giving the right analytic structure
of the amplitudes. Using the redefined LECs from Appendix B, the ⇡N ! ⇡N amplitudes
fullfill power-counting and are UV-finite up to order Q

3 and Q

4, respectively. Another
consistency check was done by using the same renormalization shifts in the amplitudes of
the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
counting and UV-finiteness by redefining only the new LECs appearing in ⇡N ! ⇡⇡N . In
Appendix B we list all LECs appearing in both reactions. The pion field was defined in the
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and it was checked that the final renormalized amplitudes are independent of ↵. We checked
our amplitudes by comparing with the results of the group of Ref. [28]. Note there are a
couple of typos in that reference, thus we compared with the groups explicit results given
in a Mathematica notebook. To avoid the same problematic with typing large expressions
error-free, we prefer to give the amplitudes in a Mathematica notebook upon request.

Note that we have the isospin symmetric case in all our amplitudes, which means we take
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and M

⇡
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⇡

. Only the electromagnetic corrections of Ref. [54]
take isospin-breaking e↵ects into account.
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TABLE I: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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F
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938.27 139.57 92.4 1232 1.285 1.35

TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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= |G|2 + |H|2 (9)

P
d�

d⌦
= 2 Im(GH⇤) (10)

Q3 c1 c2 c3 c4 d1 + d2 d3 d5 d14 � d15
HB-NN -1.26(2) 4.87(4) -7.28(2) 4.73(4) 2.91(5) -3.25(8) 0.20(5) -6.92(13)

HB-⇡N -1.60(2) 3.54(3) -6.62(2) 4.04(3) 4.05(4) -3.22(8) -0.40(4) -7.01(13)

Cov -1.44(2) 3.74(3) -6.54(3) 3.93(3) 3.73(5) -2.41(5) -0.67(4) -5.88(12)

TABLE III: LECs determined from combined fits at order Q3.
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Theoretical Error 

Several checks on the ⇡N ! ⇡N amplitudes have been performed. The renormalization
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, Z
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and g
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was checked by setting the internal nucleon line in the covariant (heavy
baryon) ⇡N amplitudes on-shell. An expansion around s = m

2
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2
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(! = 0) showed
that only the leading order diagrams exhibit poles and thus giving the right analytic structure
of the amplitudes. Using the redefined LECs from Appendix B, the ⇡N ! ⇡N amplitudes
fullfill power-counting and are UV-finite up to order Q

3 and Q
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consistency check was done by using the same renormalization shifts in the amplitudes of
the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
counting and UV-finiteness by redefining only the new LECs appearing in ⇡N ! ⇡⇡N . In
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and it was checked that the final renormalized amplitudes are independent of ↵. We checked
our amplitudes by comparing with the results of the group of Ref. [28]. Note there are a
couple of typos in that reference, thus we compared with the groups explicit results given
in a Mathematica notebook. To avoid the same problematic with typing large expressions
error-free, we prefer to give the amplitudes in a Mathematica notebook upon request.
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⇡
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. Only the electromagnetic corrections of Ref. [54]
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3 and Q
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the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
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and it was checked that the final renormalized amplitudes are independent of ↵. We checked
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expansion is often assummed to be of the order of ⇤
b

⇠ ⇤
�

⇠ M

⇢

⇠ 4⇡F
⇡

⇠ 1 GeV. On the
other hand, a somewhat more conservative estimation of ⇤

b

⇠ 600 MeV was obtained and
employed in a recent study of nucleon-nucleon scattering in Ref. [51]. It was also verified
in an analysis of Ref. [59] utilizing the Bayesian approach. Here and in what follows, we
adopt the more conservative estimate of ⇤

b

⇠ 600 MeV which seems to be justified given
the implicit inclusion of the Delta resonance in our calculations. In addition to Eq. (26),
the theoretical errors is required to be at least of the size of actual higher-order contribution

�O(n)
i

� max({|O(k)
i

� O(j)
i

|}) with n  j < k . (27)

Both Eqs. (26) and (27) are implemented in the fits using an iterative procedure, where fits
without theoretical errors are taken as starting points.

To give a meaningful uncertainty quantification for other observables we define the cor-
relation and covariance matrices as follows
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(28)

where c is a set of LECs and c⇤ is the set which minimizes �2. The correlation and covariance
matrices for the fits discussed above are given in Tables II and III. Note the correlations at
order Q4 between c1 and c2 and the additional correlations in the HB countings between c2

and e16 and between c4 and d1+2.

V. FIT RESULTS, PREDICTIONS AND DISCUSSION

We performed fits to all available data for all scattering angles and an incom-
ing pion kinetic energy T

⇡

< {50, 75, 100, 125, 150} MeV, which corresponds to
{1028, 1357, 1691, 1839, 2159} data points, respectively. The fitted LECs as a func-
tion of the maximal fitting energy T

⇡

are shown in Figs. 6 and 7 while the reduced �

2 (�̄2)
with (without) theoretical errors as a function of T

⇡

is plotted in Fig. 5. As can be seen in
the figures, most of the fitted LECs exhibit a plateau-like behaviour for the maximal fitting
energy in the range between 75 MeV and 125 MeV yielding, at the same time, a reasonable
reduced �

2 close to 1. On the other hand, �2
/dof starts increasing when experimental data

at higher energies are included in contradiction with an expected flat behavior. This feature
is also reflected in the deviation of the LECs viewed as functions of T

⇡

from a plateau-like
behavior when higher-energy data are included in the fit as visualized in Figs. 6 and 7. The
observed instability of the fits at higher energies provide a clear indication that the actual
theoretical uncertainty is larger than the one estimated as described in the previous section.
As will be shown below, the slow convergence pattern of the chiral expansion is caused by
the �(1232) resonance which is not explicitly included in the considered formulations of �PT.

The extracted values of the LECs at orders Q

2, Q

3, Q

4 are listed in Table I for all
considered approaches along with the corresponding values of the reduced �

2 and �̄

2. For
the sake of compactness, we restrict ourselves here and in what follows to the fits with
T

⇡

< 100 MeV which can be regarded as representative examples. As expected, the value
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 Representative Fits -  Tπ < 100 MeV
Input

MeV

Appendix C: Tables

Q2 HB-NN HB-⇡N Cov

c1 -1.69(4) -1.60(5) -2.19(5)
c2 3.18(8) 3.63(9) 2.52(7)
c3 -6.08(5) -6.24(5) -6.25(6)
c4 4.61(2) 5.22(3) 4.32(2)

�2
⇡N

/dof 0.72 0.69 0.67

�̄2
⇡N

/dof 116 98 413

Q3 HB-NN HB-⇡N Cov

c1 -1.24(2) -1.64(2) -1.55(2)
c2 4.89(5) 3.51(3) 3.60(4)
c3 -7.25(2) -6.63(2) -6.54(2)
c4 4.74(4) 4.01(4) 3.86(3)

d1+2 3.39(4) 4.37(4) 4.09(4)
d3 -3.47(7) -3.34(7) -2.50(4)
d5 0.00(4) -0.56(4) -0.86(4)

d14�15 -7.39(13) -7.49(13) -6.05(10)

�2
⇡N

/dof 1.04 1.03 0.97

�̄2
⇡N

/dof 14.6 13.0 13.5

Q4 HB-NN HB-⇡N Cov

c1 -1.31(8) -1.15(8) -0.82(7)
c2 1.88(23) 2.39(22) 3.56(16)
c3 -4.43(9) -4.44(9) -4.59(9)
c4 3.24(17) 3.45(17) 3.44(13)

d1+2 5.95(9) 5.60(9) 5.43(5)
d3 -5.64(6) -3.84(4) -4.58(8)
d5 -0.11(4) -0.89(4) -0.40(4)

d14�15 -11.61(9) -9.45(8) -9.94(7)
e14 0.86(29) 1.28(32) -0.63(24)
e15 -11.36(81) -13.26(79) -7.33(45)
e16 10.73(95) 8.29(95) 1.86(37)
e17 -0.66(46) -0.73(47) -0.90(32)
e18 4.47(87) 4.17(90) 3.17(45)

�2
⇡N

/dof 1.90 1.83 1.94

�̄2
⇡N

/dof 4.5 4.1 4.9

TABLE I: LECs determined from fits at order Q2, Q3, Q4 with T
⇡

< 100 MeV.
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FIG. 9: (Color online) Predictions for S waves up to T
⇡

= 100 MeV. Columns from left to right
corresponds to the to the predictions in the HB-NN, HB-⇡N and Covariant counting, respectively.
The orange, pink and red (dotted, dashed and solid) bands refer to Q2, Q3 and Q4 results including
theoretical uncertainties, respectively.
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FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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 Summary

Good description of πN→πN data up to 100 MeV 
• agreement with RS S- and P-waves 
• disagreement with some GW D- and F-waves 

• almost no differences between the counting schemes 
• χ2/dof increases for energies above 100 MeV 
• deviations from plateau-like behavior for LECs above 100 MeV 

Theoretical error underestimated for Tπ>100 MeV 
• Λb < 600 MeV 
• ∆(1232) is not included explicitly 



 Including ∆(1232)
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1

5.3. Power Counting and Renormalization 133

perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan
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= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan
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ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that
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l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where
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(5.8)

and inserting in Eq. (5.2) yields
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where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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c̄4 ! c̄4 � 4M2
⇡
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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(2)

d
i

=

¯d
i

+ �d
i

=

¯d
i

+

�
di

F 2
⇡

✓
¯�+

1

32⇡2
ln

✓
M2

⇡

µ2

◆◆

e
i

= ē
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan

✓
ImfK

RefK

◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.

5.3. Power Counting and Renormalization

The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
expansion
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i

+ �e
i

= ē
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that

�I

l±(s) = arctan(|q|Re f I

l±(s)) . (5.7)

The last relation is equivalent to the so-called K-matrix unitarization, where

fK =
Ref

1 � i|q|Ref
(5.8)

and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan
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◆
= arctan(|q|Ref) , (5.9)

where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.
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which translates into the rule of thumb
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In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that
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The last relation is equivalent to the so-called K-matrix unitarization, where
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and inserting in Eq. (5.2) yields

� = Arg(fK) = arctan
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where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series

fK =
RefPole

1 � i|q|RefPole

' RefPole(1 + i|q|RefPole + (i|q|RefPole)2 + . . . ) . (5.10)

Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.
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The chiral amplitudes including explicit � degrees of freedom are calculated in the small scale
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(ē20 + ē35)
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perturbative amplitude. For partial waves which are non-resonant, in particular, where the
imaginary parts of the partial wave amplitude do not need to be resummed and are always
suppressed compared to the real parts, Eq. (5.4) can be expanded in Im f I

l±(s) such that
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The last relation is equivalent to the so-called K-matrix unitarization, where
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and inserting in Eq. (5.2) yields
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where we have suppressed once again all indices. Furthermore, for resonant partial waves
the K-matrix unitarization in Eq. (5.8) contains an infinite resummation which generates the
respective resonance width. This can easily be seen by considering only the pole contribution
of a resonance and expanding the geometric series
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Taking into account further contributions from f gives an infinite resummation of many dif-
ferent topologies. In particular, this kind of resummation is not based on a power counting
and non-perturbatively resums higher-order contributions. This resummation is negligible for
smaller values of the phase shifts in the resonant partial waves. In particular, the condition is

|q|Ref = tan � ⌧ 1 , (5.11)

which translates into the rule of thumb

tan � ' � , (5.12)

which is a good approximation for |�| < ⇡/6.

In this chapter, the partial wave amplitude deduced from the T -matrix of ⇡N ! ⇡N is unita-
rized in two di↵erent ways to extract the phase shifts. The first one is the standard K-matrix
unitarization given in Eq. (5.7), which is used for all partial waves in the threshold region,
especially far below the � pole region. In this unitarization, we employ the real-valued Breit-
Wigner mass of the �(1232) in our amplitudes. To extend our theory to the � pole region
we employ a complex mass approach [126–128], where we unitarize only the P33 partial wave
by the prescription in Eq. (5.4) and use the K-matrix unitarization in Eq. (5.7) for all the
remaining non-resonant partial waves [125]. In this approach, we employ the complex-valued
pole mass of the �(1232) in our amplitudes, which corresponds to a resummation of graphs cor-
responding to the � width based on a consistent power counting. We stress that the K-matrix
unitarization should not be used for the P33 partial wave in combination with a complex-valued
� mass in the amplitudes. This would lead to a double counting of particular graphs due to
the additional resummation by the K-matrix unitarization.
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5.8. Figures

FIG. 1: Tree graphs for the reaction ⇡N ! ⇡N . The black/gray/white blob denotes an insertion
of the c

i

/d
i

/e
i

- vertices. Crossed diagrams are not shown.

FIG. 2: One-loop graphs of the self-energy type. Crossed diagrams are not shown.

! + (1)

! + +

+ + +

+

1

! + +

2

Figure 5.1.: Examples of transitions from �-less to �-ful graphs at leading and next-to-leading
order. An insertion of the c

i

or b
i

vertices is denoted by a black blob. Dashed,
solid, and double solid lines refer to pions, nucleons, and � resonances, respectively.
Crossed and redundant diagrams are not shown.
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D.3.1. Renormalization of Masses and Couplings
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The e↵ective nucleon-� axial coupling constant in the covariant approach is given by

h = h
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The e↵ective nucleon-� axial coupling constant in the covariant approach is given by

h = h
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+ �h(3) + �h(4) ,
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5.8. Figures

FIG. 1: Tree graphs for the reaction ⇡N ! ⇡N . The black/gray/white blob denotes an insertion
of the c

i

/d
i

/e
i

- vertices. Crossed diagrams are not shown.

FIG. 2: One-loop graphs of the self-energy type. Crossed diagrams are not shown.

! + (1)

! + +

+ + +

+

1

! + +

2

Figure 5.1.: Examples of transitions from �-less to �-ful graphs at leading and next-to-leading
order. An insertion of the c

i

or b
i

vertices is denoted by a black blob. Dashed,
solid, and double solid lines refer to pions, nucleons, and � resonances, respectively.
Crossed and redundant diagrams are not shown.



 Renormalization II
HB approach

Covariant “modified“ EOMS scheme

The renormalization of the LECs in the HB formalism can be performed order-by-order
like in the meson sector, where we have
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For our purpose we need to absorb UV divergent pieces at order Q

3 and Q

4 into d

i

and e

i

,
respectively. We therefore define the renormalized LECs via
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where the � functions are given in Appendix B.

In the covariant approach, the renormalization of the LECs in the EOMS scheme is more
tedious. Loop graphs contribute to every chiral order and thus cause a power counting
problem. The basic idea of EOMS to resolve this issue is based on the observation that
the power counting breaking terms (PCBT) stemming from the loop graphs are analytic
in the pion mass and momenta and thus can be absorbed into LECs of the most general
Lagrangian. For our purpose we need to consider the PCBT from the loop graphs of order
Q

3 and Q

4 in the naive counting. After renormalization of the leading order couplings m

N

and g

A

, the PCBT start to appear at order Q

2. Therefore, we normalize the LECs in the
EOMS scheme as follows
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where for x 2 {c, d, e}
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The notation is the following, x̄

(n)
i,f

denotes the finite analytic parts from loops of naive

order n. �

(n)
xi,B

and �

(n)
xi,M

denote the � functions which cancel baryonic and mesonic
tadpoles, respectively. For practical uses we made in the last line the indentifications
�
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(n)
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and �

xi = �

(n)
xi,M

, with �

xi from Eq. (26).

We determined the finite and UV divergent pieces in the following way. First of all,
we changed the spin basis for both processes such that every spin structure fullfills power
counting by itself. In ⇡N ! ⇡N the better suited basis is

T
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i

+ �e
i

+ �e
(4,�)
i

(1)

�x
i

=

�
xi + ��

xi

F 2
⇡

✓
¯�+

1

32⇡2
ln

✓
M2

⇡

µ2

◆◆

�x
(n,�)
i

=

�x̄
(n,�)
i,f

F 2
⇡

+

�
(n,�)
xi

F 2
⇡

✓
¯�+

1

16⇡2
ln

✓
2�

µ

◆◆ (2)

Le↵ = L(2)
⇡⇡

+ L(4)
⇡⇡

+ L(1)
⇡N

+ L(2)
⇡N

+ L(3)
⇡N

+ L(4)
⇡N

+ L(1)
⇡� + L(2)

⇡� + L(4)
⇡�

+ L(1)
⇡N� + L(2)

⇡N� + L(3)
⇡N� + L(4)

⇡N�

(3)

c̄1 ! c̄1 + 2M2
⇡
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i

+ �e
i

+ �e
(4,�)
i

(3)

�x
i

=

�
xi + ��

xi

F 2
⇡

✓
¯�+

1

32⇡2
ln

✓
M2

⇡

µ2

◆◆

�x
(n,�)
i

=

�x̄
(n,�)
i,f

F 2
⇡

+

�
(n,�)
xi

F 2
⇡

✓
¯�+

1

16⇡2
ln

✓
2�

µ

◆◆ (4)

Le↵ = L(2)
⇡⇡

+ L(4)
⇡⇡

+ L(1)
⇡N

+ L(2)
⇡N

+ L(3)
⇡N

+ L(4)
⇡N

+ L(1)
⇡� + L(2)

⇡� + L(4)
⇡�

+ L(1)
⇡N� + L(2)

⇡N� + L(3)
⇡N� + L(4)

⇡N�

(5)

c̄1 ! c̄1 + 2M2
⇡
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where �2
⇡N

incorporates the information from the ⇡N scattering data [92] as well as an
estimated theoretical uncertainty [95], see Eqs. (3.47) - (3.49). Furthermore, we employ
a = {g1, b4, b5}, ā = {9/5g

A

, 1, 1} and �a
i

= 1, where the large N
c

prediction for g1 is used and
naturalness for b4 and b5 is assumed. Note that the employed error �a

i

is rather conservative.
The quantity �2

C

is used to enforce additional constraints on the LECs from the � sector.
Note that g1 and b4, b5 first appear in loops at order "3 and "4, respectively. In particular,
these LECs could not be reliably constrained by mere scattering data such that the additional
constraints �2

C

had to be included in the fitting procedure. Considering that we include explicit
� resonances in our calculation, we adopt a more aggressive estimate for the breakdown scale,
namely ⇤

b

= 700 MeV. As a second step, after determining a preferred set of LECs which
minimizes the quantity in Eq. (5.39), additional information from the subthreshold region is
included and the following quantity is minimized

�̂2 = �2
⇡N

+ �2
RS + �2

C

, (5.40)

where �2
RS is defined as in chapter 3 as the standard sum of squares including the 8 leading sub-

threshold parameters [94]. Note that the starting point in the iterative minimization procedure
of �̂2 is the preferred set of LECs determined from minimizing �2 in Eq. (5.39).

5.5. Fit Results, Predictions, and Discussion

5.5.1. K-Matrix Approach

In the K-matrix approach, fits were performed to all available data for all scattering angles
and an incoming pion kinetic energy T

⇡

< {100, 125, 150, 175, 200} MeV corresponding to
{1704, 1854, 2176, 2399, 2564} data points, respectively. In Fig. 5.2, the reduced �2 and �̄2 are
plotted as functions of the maximum fit energy T

⇡

, whereas in Figs. 5.3 and 5.4, the extracted
LECs as functions of T

⇡

are shown. As can be seen, in the range between 100 MeV and 150 MeV
most of the extracted LECs exhibit a plateau-like behavior and the reduced �2 is close to 1.
For larger energies, the reduced �2 and �̄2 even slightly decrease, but the extracted LECs start
to deviate from a constant dependence. The explanation for this behavior is the unitariza-
tion prescription used in the calculation of the phase shifts. In the K-matrix unitarization
in Eq. (5.7), the perturbative amplitude gets modified and the e↵ect of this modification gets
stronger with increasing magnitude of the considered phase shifts. As mentioned before, the
K-matrix unitarization is only reliable for small phase shifts, namely |�| < ⇡/6. Thus, as rep-
resentative results of the first step of the fitting procedure we choose the fits with T

⇡

< 125 MeV.

In Table 5.2, the extracted LECs at order "2, "3, and "4 are given for all three chiral ap-
proaches. Additionally, we list the corresponding values of the reduced �2

⇡N

and �̄2
⇡N

. For each
chiral approach, the fits without and with the additional constraints �2

RS are compared. We
observe a decrease of the reduced �̄2

⇡N

with increasing chiral order, which demonstrates the
expected improved description of the scattering data. As in the �-less case, the reduced �2

⇡N

has the opposite rising behavior, which is still due to very large theoretical uncertainties at
lower orders. We emphasize that all three considered approaches describe the data in a sim-
ilar quality. Furthermore, the negligible increase of �̄2

⇡N
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Note that g1 and b4, b5 first appear in loops at order "3 and "4, respectively. In particular,
these LECs could not be reliably constrained by mere scattering data such that the additional
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had to be included in the fitting procedure. Considering that we include explicit
� resonances in our calculation, we adopt a more aggressive estimate for the breakdown scale,
namely ⇤
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= 700 MeV. As a second step, after determining a preferred set of LECs which
minimizes the quantity in Eq. (5.39), additional information from the subthreshold region is
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of �̂2 is the preferred set of LECs determined from minimizing �2 in Eq. (5.39).
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5.5.1. K-Matrix Approach

In the K-matrix approach, fits were performed to all available data for all scattering angles
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has the opposite rising behavior, which is still due to very large theoretical uncertainties at
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where �2
⇡N

incorporates the information from the ⇡N scattering data [92] as well as an
estimated theoretical uncertainty [95], see Eqs. (3.47) - (3.49). Furthermore, we employ
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= 1, where the large N
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prediction for g1 is used and
naturalness for b4 and b5 is assumed. Note that the employed error �a
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is rather conservative.
The quantity �2
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is used to enforce additional constraints on the LECs from the � sector.
Note that g1 and b4, b5 first appear in loops at order "3 and "4, respectively. In particular,
these LECs could not be reliably constrained by mere scattering data such that the additional
constraints �2

C

had to be included in the fitting procedure. Considering that we include explicit
� resonances in our calculation, we adopt a more aggressive estimate for the breakdown scale,
namely ⇤
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= 700 MeV. As a second step, after determining a preferred set of LECs which
minimizes the quantity in Eq. (5.39), additional information from the subthreshold region is
included and the following quantity is minimized
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where �2
RS is defined as in chapter 3 as the standard sum of squares including the 8 leading sub-

threshold parameters [94]. Note that the starting point in the iterative minimization procedure
of �̂2 is the preferred set of LECs determined from minimizing �2 in Eq. (5.39).

5.5. Fit Results, Predictions, and Discussion

5.5.1. K-Matrix Approach

In the K-matrix approach, fits were performed to all available data for all scattering angles
and an incoming pion kinetic energy T
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< {100, 125, 150, 175, 200} MeV corresponding to
{1704, 1854, 2176, 2399, 2564} data points, respectively. In Fig. 5.2, the reduced �2 and �̄2 are
plotted as functions of the maximum fit energy T

⇡

, whereas in Figs. 5.3 and 5.4, the extracted
LECs as functions of T

⇡

are shown. As can be seen, in the range between 100 MeV and 150 MeV
most of the extracted LECs exhibit a plateau-like behavior and the reduced �2 is close to 1.
For larger energies, the reduced �2 and �̄2 even slightly decrease, but the extracted LECs start
to deviate from a constant dependence. The explanation for this behavior is the unitariza-
tion prescription used in the calculation of the phase shifts. In the K-matrix unitarization
in Eq. (5.7), the perturbative amplitude gets modified and the e↵ect of this modification gets
stronger with increasing magnitude of the considered phase shifts. As mentioned before, the
K-matrix unitarization is only reliable for small phase shifts, namely |�| < ⇡/6. Thus, as rep-
resentative results of the first step of the fitting procedure we choose the fits with T

⇡

< 125 MeV.

In Table 5.2, the extracted LECs at order "2, "3, and "4 are given for all three chiral ap-
proaches. Additionally, we list the corresponding values of the reduced �2
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and �̄2
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. For each
chiral approach, the fits without and with the additional constraints �2

RS are compared. We
observe a decrease of the reduced �̄2
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with increasing chiral order, which demonstrates the
expected improved description of the scattering data. As in the �-less case, the reduced �2
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has the opposite rising behavior, which is still due to very large theoretical uncertainties at
lower orders. We emphasize that all three considered approaches describe the data in a sim-
ilar quality. Furthermore, the negligible increase of �̄2
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/dof when the additional constraints
from the subthreshold region in the form of �2

RS are included shows that the description of
the scattering data is only slightly a↵ected, but, as seen in Tables 5.7 and 5.8, the results for
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baryon) ⇡N amplitudes on-shell. An expansion around s = m
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(! = 0) showed
that only the leading order diagrams exhibit poles and thus giving the right analytic structure
of the amplitudes. Using the redefined LECs from Appendix B, the ⇡N ! ⇡N amplitudes
fullfill power-counting and are UV-finite up to order Q

3 and Q

4, respectively. Another
consistency check was done by using the same renormalization shifts in the amplitudes of
the reaction ⇡N ! ⇡⇡N , whose analysis will be published elsewhere, and verifying the power
counting and UV-finiteness by redefining only the new LECs appearing in ⇡N ! ⇡⇡N . In
Appendix B we list all LECs appearing in both reactions. The pion field was defined in the
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and it was checked that the final renormalized amplitudes are independent of ↵. We checked
our amplitudes by comparing with the results of the group of Ref. [28]. Note there are a
couple of typos in that reference, thus we compared with the groups explicit results given
in a Mathematica notebook. To avoid the same problematic with typing large expressions
error-free, we prefer to give the amplitudes in a Mathematica notebook upon request.

Note that we have the isospin symmetric case in all our amplitudes, which means we take
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. Only the electromagnetic corrections of Ref. [54]
take isospin-breaking e↵ects into account.
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The amplitudes for the reaction ⇡N ! ⇡N depend on several LECs as explained in
section III. Throughout this work, we use the following values for the various LECs and
masses entering the leading order e↵ective Lagrangian: M
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= 139.57 MeV, F
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, which is in
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= 92.21(2)(14) [46]. All LECs should be
unterstood as renormalized quantities as discussed in the previous section.
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expansion is often assummed to be of the order of ⇤
b

⇠ ⇤
�

⇠ M

⇢

⇠ 4⇡F
⇡

⇠ 1 GeV. On the
other hand, a somewhat more conservative estimation of ⇤

b

⇠ 600 MeV was obtained and
employed in a recent study of nucleon-nucleon scattering in Ref. [51]. It was also verified
in an analysis of Ref. [59] utilizing the Bayesian approach. Here and in what follows, we
adopt the more conservative estimate of ⇤

b

⇠ 600 MeV which seems to be justified given
the implicit inclusion of the Delta resonance in our calculations. In addition to Eq. (26),
the theoretical errors is required to be at least of the size of actual higher-order contribution
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|}) with n  j < k . (27)

Both Eqs. (26) and (27) are implemented in the fits using an iterative procedure, where fits
without theoretical errors are taken as starting points.

To give a meaningful uncertainty quantification for other observables we define the cor-
relation and covariance matrices as follows

Cov(c
i

c

j

) = H�1
ij

with H
ij

=
1

2

@

2
�

2

@c

i

@c

j

����
c=c⇤

,

Corr(c
i

c

j

) = Cov(c
i

c

j

)/
q

Cov(c
i

c

i

)Cov(c
j

c

j

) ,

(28)

where c is a set of LECs and c⇤ is the set which minimizes �2. The correlation and covariance
matrices for the fits discussed above are given in Tables II and III. Note the correlations at
order Q4 between c1 and c2 and the additional correlations in the HB countings between c2

and e16 and between c4 and d1+2.

V. FIT RESULTS, PREDICTIONS AND DISCUSSION

We performed fits to all available data for all scattering angles and an incom-
ing pion kinetic energy T

⇡

< {50, 75, 100, 125, 150} MeV, which corresponds to
{1028, 1357, 1691, 1839, 2159} data points, respectively. The fitted LECs as a func-
tion of the maximal fitting energy T

⇡

are shown in Figs. 6 and 7 while the reduced �

2 (�̄2)
with (without) theoretical errors as a function of T

⇡

is plotted in Fig. 5. As can be seen in
the figures, most of the fitted LECs exhibit a plateau-like behaviour for the maximal fitting
energy in the range between 75 MeV and 125 MeV yielding, at the same time, a reasonable
reduced �

2 close to 1. On the other hand, �2
/dof starts increasing when experimental data

at higher energies are included in contradiction with an expected flat behavior. This feature
is also reflected in the deviation of the LECs viewed as functions of T

⇡

from a plateau-like
behavior when higher-energy data are included in the fit as visualized in Figs. 6 and 7. The
observed instability of the fits at higher energies provide a clear indication that the actual
theoretical uncertainty is larger than the one estimated as described in the previous section.
As will be shown below, the slow convergence pattern of the chiral expansion is caused by
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where c is a set of LECs and c⇤ is the set which minimizes �2. The correlation and covariance
matrices for the fits discussed above are given in Tables II and III. Note the correlations at
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TABLE I: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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154 5. Elastic Pion-Nucleon Scattering with �(1232) Resonances

Figure 5.2.: Reduced �2 (with theoretical error) and �̄2 (without theoretical error) as functions
of the maximum fit energy T

⇡

, see Eq. (5.39). The results for the HB-NN, HB-⇡N,
and covariant counting are denoted by blue, red, and green bars. The upper two
rows refer to fits in the K-matrix approach, whereas the lower two rows refer to
fits in the complex mass approach.
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5.8. Figures 155

Figure 5.3.: K-matrix approach: LECs extracted at order "3 as functions of the maximum fit
energy T

⇡

, see Eq. (5.39). The labels HB-NN, HB-⇡N, and Cov (covariant) denote
the di↵erent counting schemes of 1/m

N

contributions, see section 3.4.
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Figure 5.4.: K-matrix approach: LECs extracted at order "4 as functions of the maximum fit
energy T

⇡

, see Eq. (5.39). The labels HB-NN, HB-⇡N, and Cov (covariant) denote
the di↵erent counting schemes of 1/m

N

contributions, see section 3.4.
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TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.
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HB-NN HB-⇡N Cov

"2 ⇡N ⇡N+RS ⇡N ⇡N+RS ⇡N ⇡N+RS

h
A

1.34(0) 1.34(0) 1.37(0) 1.36(0) 1.40(0) 1.40(0)
c1 -1.02(3) -1.01(3) -0.79(2) -0.81(2) -0.86(2) -0.87(2)
c2 0.27(5) 0.28(5) 0.80(5) 0.80(5) 0.45(3) 0.45(3)
c3 -0.99(4) -0.99(4) -0.99(3) -1.01(3) -0.71(3) -0.72(3)
c4 0.51(3) 0.52(3) 1.09(3) 1.08(3) 0.87(2) 0.87(2)

�2
⇡N

/dof 0.65 0.64 0.61 0.61 0.55 0.56

�̄2
⇡N

/dof 14.1 14.0 3.7 3.7 2.9 3.0

"3 ⇡N ⇡N+RS ⇡N ⇡N+RS ⇡N ⇡N+RS

h
A

1.46(1) 1.46(1) 1.45(1) 1.46(1) 1.46(1) 1.46(1)
c1 -1.81(1) -1.81(1) -1.98(1) -1.97(1) -1.51(1) -1.50(1)
c2 1.69(9) 1.67(9) 1.20(6) 1.17(6) 0.67(3) 0.69(3)
c3 -3.91(9) -3.89(9) -3.74(7) -3.70(7) -2.67(7) -2.63(6)
c4 1.71(5) 1.70(5) 1.50(4) 1.48(4) 1.26(5) 1.22(5)

d1+2 0.23(6) 0.21(5) 0.59(6) 0.57(6) 0.57(5) 0.55(4)
d3 -1.55(6) -1.53(6) -1.40(5) -1.39(6) -1.78(3) -1.78(3)
d5 0.82(3) 0.82(3) 0.53(3) 0.54(3) 0.70(3) 0.72(3)

d14�15 -0.87(13) -0.83(13) -1.14(12) -1.11(12) -0.75(8) -0.72(7)
g1 -2.74(15) -2.74(14) -2.82(13) -2.74(14) -0.67(29) -0.38(29)

�2
⇡N

/dof 1.16 1.15 1.26 1.26 1.20 1.19

�̄2
⇡N

/dof 2.1 2.1 2.0 2.0 1.95 1.95

"4 ⇡N ⇡N+RS ⇡N ⇡N+RS ⇡N ⇡N+RS

h
A

1.38(1) 1.37(1) 1.39(1) 1.38(1) 1.42(1) 1.40(1)
c1 -1.45(5) -1.39(3) -1.29(5) -1.30(4) -1.50(4) -1.32(3)
c2 0.39(13) 0.51(10) 1.66(13) 1.61(10) 0.52(7) 0.86(5)
c3 -2.14(7) -2.12(6) -2.37(5) -2.34(5) -1.98(7) -1.98(6)
c4 2.47(10) 2.29(5) 2.56(10) 2.43(6) 2.31(7) 2.28(4)

d1+2 2.12(7) 2.07(6) 1.98(7) 1.94(6) 1.67(5) 1.74(5)
d3 -2.61(6) -2.62(5) -1.97(4) -1.96(4) -3.13(4) -3.07(4)
d5 0.36(3) 0.39(3) 0.13(3) 0.15(3) 0.90(3) 0.81(3)

d14�15 -3.38(13) -3.53(12) -2.75(11) -2.76(10) -2.94(10) -3.16(9)
e14 2.10(15) 2.30(13) 1.76(14) 1.92(12) 1.76(12) 1.61(10)
e15 -3.41(45) -4.13(26) -1.92(50) -2.61(31) -2.27(19) -2.50(17)
e16 2.55(48) 2.70(28) -1.23(56) -0.65(37) 1.40(18) 0.88(9)
e17 -0.63(23) -0.53(20) -0.59(21) -0.71(19) -0.96(15) -0.87(14)
e18 -0.82(43) -0.11(15) -0.36(42) 0.30(21) 0.82(18) 1.03(10)
g1 -2.41(20) -2.52(19) -2.55(19) -2.60(17) -2.35(21) -2.32(20)
b4 -1.33(34) -1.45(29) -1.44(31) -1.56(28) 1.07(43) 1.55(28)
b5 -1.24(37) -1.39(32) -1.31(35) -1.39(32) 0.81(65) 1.35(32)

�2
⇡N

/dof 1.73 1.73 1.80 1.80 1.78 1.80

�̄2
⇡N

/dof 1.91 1.92 1.92 1.92 1.91 1.93

Table 5.2.: K-matrix approach: LECs extracted from fits at order "2, "3, and "4 with
T

⇡

< 125 MeV. The labels ⇡N and ⇡N+RS denote fits without and with addi-
tional constraints �2

RS, see Eqs. (5.39) and (5.40), respectively. The labels HB-NN,
HB-⇡N, and Cov (covariant) denote the di↵erent counting schemes of 1/m

N

con-
tributions, see section 3.4.

Cov
HB-πN

HB-NN

correlations:
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5.8. Figures 157

Figure 5.5.: K-matrix approach: Covariant predictions for the di↵erential cross sections d�/d⌦
up to pion energies T

⇡

= 170 MeV. The pink and red (dashed and solid) bands
refer to "3 and "4 results including theoretical uncertainties, respectively. The
experimental data are taken from the GWU-SAID data base [92].
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Figure 5.6.: K-matrix approach: Covariant predictions for the polarizations P up to pion en-
ergies T

⇡

= 170 MeV. The pink and red (dashed and solid) bands refer to "3 and
"4 results including theoretical uncertainties, respectively. The experimental data
are taken from the GWU-SAID data base [92].
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FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
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Figure 5.10.: K-matrix approach: Predicted D-wave phase shifts including theoretical uncer-
tainties up to pion energies T

⇡

= 170 MeV. The data are taken from the GWU-
SAID PWA [92,93]. For notations see Fig. 5.8.

FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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Figure 5.12.: K-matrix approach: Predicted F -wave phase shifts including theoretical uncer-
tainties up to pion energies T

⇡

= 170 MeV. The data are taken from the GWU-
SAID PWA [92,93]. For notations see Fig. 5.8.

FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
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= 100
MeV. For remaining notation see Fig. 9.
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 Summary

Good description of πN→πN data up to 170 MeV 
• agreement with exp. scattering data 
• agreement with RS S- and P-waves 
• problems with some GW D- and F-waves 

• almost no differences between the counting schemes 
• χ2/dof stays constant for energies above 100 MeV 
• limited by applicability of K-matrix unitarization 
• correlations between LECs 

Extensions 
• Complex mass approach   
• consistent combined fits of πN→πN and πN→ππN exp. data 

• Q4 

• 𝜺4 
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a program has been hampered by inconsistencies in the
low-energy πN data base, as exemplified by contradict-
ing partial-wave analyses, the Karlsruhe–Helsinki [28, 29]
and the GWU/SAID solutions [30].
In ππ scattering, a similar situation prevailed until the

consequent use of Roy equations [31], a combination of
constraints from analyticity, unitarity, and crossing sym-
metry in the form of coupled integral equations for the
partial waves. This significantly advanced the knowl-
edge of the low-energy ππ phase shifts [32, 33]. Indeed,
the matching to ChPT then allowed for a very precise
determination of the pertinent ππ LECs [34]. Mean-
while, Roy-equation techniques have been extended to
other processes [35, 36], in particular, a similar program
has been pursued for πN scattering based on Roy–Steiner
(RS) equations [37–40], making use of a high-accuracy ex-
traction of the πN scattering lengths from pionic atoms
as an additional constraint [41–45]. In this Letter, we
work out the consequences of our RS solution for the
πN LECs by matching the RS and the ChPT represen-
tation of the πN amplitude in the subthreshold region.
The main advantages of such an approach are the follow-
ing: first, the πN amplitude in the subthreshold region
is a polynomial in the Mandelstam variables (apart from
the Born terms), so that the chiral series is expected to
converge best there. In contrast to [9], we do not need
additional input from the physical region, as in our case
the subthreshold parameters follow from the RS solution
alone. Second, the matching amounts to equating the
subthreshold parameters from [40, 46] with their chiral
expansion, which reduces the determination of the LECs
to an algebraic problem. Third, we can use the compre-
hensive error analysis performed in [40, 46], which trans-
lates to a full covariance matrix for the extracted LECs.

SUBTHRESHOLD PARAMETERS

We start by specifying conventions for the process

πa(q) +N(p) → πb(q′) +N(p′), (1)

with pion isospin labels a, b and Mandelstam variables

s = (p+ q)2, t = (p′ − p)2, u = (p− q′)2, (2)

fulfilling s + t + u = 2m2
N + 2M2

π . We parameterize the
scattering amplitude as

T ba(ν, t) = δbaT+(ν, t) +
1

2
[τb, τa]T−(ν, t),

T I(ν, t) = ū(p′)

{

DI(ν, t)−
[/q′, /q]

4mN
BI(ν, t)

}

u(p), (3)

where ν = (s− u)/(4mN), the isospin index I = ± refers
to isoscalar/isovector amplitudes, mN and Mπ to the nu-
cleon and pion mass, and τa denotes isospin Pauli matri-
ces. Throughout, the amplitudes with a definite I = ±

d
+
00 [M

−1
π ] −1.36(3) d

−

00 [M
−2
π ] 1.41(1)

d
+
10 [M

−3
π ] 1.16(2) d

−

10 [M
−4
π ] −0.159(4)

d
+
01 [M

−3
π ] 1.16(2) d

−

01 [M
−4
π ] −0.141(5)

d
+
20 [M

−5
π ] 0.196(3) b

−

00 [M
−2
π ] 10.49(11)

d
+
11 [M

−5
π ] 0.185(3) b

−

10 [M
−4
π ] 1.00(3)

d
+
02 [M

−5
π ] 0.0336(6) b

−

01 [M
−4
π ] 0.21(2)

b
+
00 [M

−3
π ] −3.45(7)

TABLE I: Subthreshold parameters from the RS analysis [40,
46].

index are understood to be related to the π±p → π±p
charge channels according to

X± ≡
1

2

(

Xπ−p→π−p ±Xπ+p→π+p

)

, (4)

for X ∈ {D,B, . . .}, and the nucleon and pion mass are
identified with the masses of the proton and the charged
pion, respectively, see [40] and [47–50] for a discussion of
the pertinent isospin-breaking corrections. As mentioned
above, once the Born terms are subtracted, the amplitude
in the subthreshold region becomes a polynomial in ν and
t. A particularly convenient representation is provided by
the subthreshold expansion

D̄±(ν, t) =

(

1
ν

) ∞
∑

n,m=0

d±mnν
2mtn,

B̄±(ν, t) =

(

ν
1

) ∞
∑

n,m=0

b±mnν
2mtn, (5)

where the upper/lower entry corresponds to I = ±, and
the Born-term-subtracted amplitudes are defined as

X̄±(ν, t) = X±(ν, t)−X±
pv(ν, t), X ∈ {D,B}, (6)

with

B±
pv(ν, t) = g2

(

1

m2
N − s

∓
1

m2
N − u

)

−
g2

2m2
N

(

0
1

)

,

D±
pv(ν, t) =

g2

mN

(

1
0

)

+ νB±
pv(ν, t), (7)

where g denotes the πN coupling constant.
For the matching to ChPT at N3LO (complete one-

loop order) we need the 13 subthreshold parameters listed
in Table I. The solution of the RS equations is obtained
by minimizing a χ2-like function, defined as the difference
between left- and right-hand side of the equations on a
grid of points, with respect to the subtraction constants
and the low-energy phase shifts. Most of the subthresh-
old parameters listed in Table I already appear as sub-
traction constants of the RS system, and thus follow as
output from the RS solution, while the remaining ones,
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for X ∈ {D,B, . . .}, and the nucleon and pion mass are
identified with the masses of the proton and the charged
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where g denotes the πN coupling constant.
For the matching to ChPT at N3LO (complete one-

loop order) we need the 13 subthreshold parameters listed
in Table I. The solution of the RS equations is obtained
by minimizing a χ2-like function, defined as the difference
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grid of points, with respect to the subtraction constants
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N + 2M2

π . We parameterize the
scattering amplitude as

T ba(ν, t) = δbaT+(ν, t) +
1

2
[τb, τa]T−(ν, t),

T I(ν, t) = ū(p′)

{

DI(ν, t)−
[/q′, /q]

4mN
BI(ν, t)

}

u(p), (3)

where ν = (s− u)/(4mN), the isospin index I = ± refers
to isoscalar/isovector amplitudes, mN and Mπ to the nu-
cleon and pion mass, and τa denotes isospin Pauli matri-
ces. Throughout, the amplitudes with a definite I = ±
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TABLE I: Subthreshold parameters from the RS analysis [40,
46].

index are understood to be related to the π±p → π±p
charge channels according to

X± ≡
1

2

(

Xπ−p→π−p ±Xπ+p→π+p

)

, (4)

for X ∈ {D,B, . . .}, and the nucleon and pion mass are
identified with the masses of the proton and the charged
pion, respectively, see [40] and [47–50] for a discussion of
the pertinent isospin-breaking corrections. As mentioned
above, once the Born terms are subtracted, the amplitude
in the subthreshold region becomes a polynomial in ν and
t. A particularly convenient representation is provided by
the subthreshold expansion

D̄±(ν, t) =
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where the upper/lower entry corresponds to I = ±, and
the Born-term-subtracted amplitudes are defined as
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where g denotes the πN coupling constant.
For the matching to ChPT at N3LO (complete one-

loop order) we need the 13 subthreshold parameters listed
in Table I. The solution of the RS equations is obtained
by minimizing a χ2-like function, defined as the difference
between left- and right-hand side of the equations on a
grid of points, with respect to the subtraction constants
and the low-energy phase shifts. Most of the subthresh-
old parameters listed in Table I already appear as sub-
traction constants of the RS system, and thus follow as
output from the RS solution, while the remaining ones,
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7.6. Tables

HB-NN HB-⇡N Cov

NLO Q2 "2 Q2 "2 Q2 "2

c1 -0.74(2) -0.74(2) -0.74(2) -0.69(2) -0.74(2) -0.69(3)
c2 1.81(3) -0.49(17) 1.81(3) 0.81(8) 1.81(3) 0.40(10)
c3 -3.61(5) -0.65(22) -3.61(5) -0.44(23) -3.61(5) -0.49(23)
c4 2.44(3) 0.96(11) 2.17(3) 0.64(11) 2.17(3) 0.64(11)

N2LO Q3 "3 Q3 "3 Q3 "3

c1 -1.08(2) -1.25(3) -1.08(2) -1.24(3) -1.00(2) -1.19(4)
c2 3.26(3) 1.71(1.01) 3.26(3) 1.13(1.02) 2.55(3) 1.14(19)
c3 -5.39(5) -2.68(84) -5.39(5) -2.75(84) -4.90(5) -2.56(40)
c4 3.62(3) 1.57(16) 3.62(3) 1.58(16) 3.08(3) 1.33(20)

d1+2 1.02(6) 0.14(17) 1.02(6) -0.07(18) 1.78(6) 0.62(16)
d3 -0.46(2) -0.84(14) -0.46(2) -0.48(15) -1.12(2) -1.45(5)
d5 0.15(5) 0.80(7) 0.15(5) 0.47(6) -0.05(5) 0.29(6)

d14�15 -1.85(6) -1.09(30) -1.85(6) -0.72(31) -2.27(6) -0.98(13)

N3LO Q4 "4 Q4 "4 Q4 "4

c1 -1.11(3) -1.11(3) -1.11(3) -1.11(3) -1.12(3) -1.10(3)
c2 3.61(4) 1.41(38) 3.17(3) 1.28(20) 3.35(3) 1.16(20)
c3 -5.60(6) -1.88(45) -5.67(6) -2.04(39) -5.70(6) -2.10(39)
c4 4.26(4) 2.03(28) 4.35(4) 2.07(29) 3.97(3) 1.91(27)

d1+2 6.37(9) 1.78(31) 7.66(9) 2.90(30) 4.70(7) 1.78(24)
d3 -9.18(9) -3.64(36) -10.77(10) -5.91(50) -5.26(5) -3.25(14)
d5 0.87(5) 1.52(7) 0.59(5) 1.03(7) 0.31(5) 0.66(6)

d14�15 -12.56(12) -4.38(54) -13.44(12) -5.17(55) -8.84(10) -3.41(41)
e14 1.16(4) 1.64(10) 0.85(4) 1.12(16) 1.17(4) 1.28(11)
e15 -2.26(6) -4.95(15) -0.83(6) -3.30(25) -2.58(7) -3.07(13)
e16 -0.29(3) 4.21(16) -2.75(3) 1.92(43) -1.77(3) 1.71(17)
e17 -0.17(6) -0.44(6) 0.03(6) -0.39(7) -0.45(6) -0.51(7)
e18 -3.47(5) 1.34(29) -4.48(5) 0.67(31) -1.68(5) 1.30(17)

Table 7.1.: LECs extracted from fits at NLO, N2LO, and N3LO in the HB-NN, HB-⇡N, and
covariant approach with implicit (Qn) and explicit ("n) � degrees of freedom. The
units of the LECs c

i

, d
i

and e
i

are GeV�1, GeV�2 and GeV�3, respectively.
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In the �-less case, the 13 leading subthreshold parameters depend on 13 2⇡N̄N -LECs, whereas
in the �-ful case the expressions depend on 4 additional LECs from the � sector. Thus, an
extraction of these additional LECs requires further constraints apart from the subthreshold
parameters. In particular, following conservative estimates are assumed for the �-LECs

h
A

= 1.40 ± 0.05 and g1 = b4 = b5 = 0 ± 3 . (7.1)

The coupling constant h
A

contributes at leading order, which makes its error estimate pre-
dominant. Nevertheless, the employed error estimate for h

A

in Eq. (7.1) is chosen reasonably
conservative. It is consistent with the large N

c

prediction h
A

= 1.37 ± 0.15 [109,131] and with
the value extracted from the covariant � width at full one-loop order h

A

= 1.44 ± 0.02 [110].
Moreover, it is also consistent with the values determined in the fits performed in the previous
chapter, see Table 5.2. The further LECs contribute at loop-level, g1 at order "3 and b4,5 at
order "4. The estimates for these LECs also agree with their large N

c

predictions, where only
magnitudes and not signs can be constrained, see Ref. [130], such that we employ the more
generous estimates from Eq. (7.1). Furthermore, following numerical values for the various
LECs and masses entering the leading-order e↵ective Lagrangian are used: M

⇡

= 139.57 MeV,
F

⇡

= 92.2 MeV, m
N

= 938.27 MeV, m� = 1232 MeV [47] and g
A

= 1.289 from Eq. (3.39).
Once again, the e↵ects of the uncertainties of these quantities are not taken into account. In
particular, they are negligible in comparison to the other uncertainties encountered in the cal-
culation.

The following procedure is in close analogy to the one in Ref. [107]. In particular, we match the
LECs c

i

, d
i

and e
i

order-by-order to the corresponding subthreshold parameters determined by
the RS analysis [94]. Furthermore, we use the standard Gaussian error propagation including
the full covariance matrix of the subthreshold parameters given by the RS analysis as well as
the estimated uncertainties of the �-LECs in Eq. (7.1) in order to calculate the full covariance
matrix for the extracted LECs. Whereas in Ref. [107] the matching is performed for the two
HB countings, HB-NN and HB-⇡N, in the formulations without explicit � degrees of freedom,
we extend the matching in this chapter by including the �(1232) resonance contributions up to
full one-loop order in the small scale expansion. Additionally, the matching is also performed
in the manifestly covariant framework, both with implicit and explicit � dynamics. Note that
we absorb the Goldberger-Treiman correction proportional to d18 such that our value of g

A

is
slightly di↵erent than the one in Ref. [107]. However, the di↵erence is a higher-order e↵ect,
namely O("5).

7.3. Results in the Heavy Baryon Formulations

We first discuss the results in the two HB approaches, HB-NN and HB-⇡N. In Table 7.1, we
present the extracted LECs in both HB counting schemes in comparison of the �-ful and �-less
values. Note that we employ in this chapter the standard abbreviations NLO (next-to-leading
order), N2LO (next-to-next-to-leading order), and N3LO (next-to-next-to-next-to-leading or-
der). When the � is included explicitly, we observe on the one hand a strong reduction of the
size of the LECs c

i

and d
i

and on the other hand that the propagated errors of the LECs are
enhanced. Whereas the first point can be explained by resonance saturation, see Table 4.6,
the second point is obviously due to the additional errors from the �-LECs in Eq. (7.1), espe-
cially h

A

. Furthermore, all LECs at order "3 are of natural size and the results in general look
reasonable and convincing. However, at order "4, some LECs like d3 and d14�15 still turn out
to be unnaturally large. It looks even more critical in the HB-⇡N counting. In Ref. [107], the
linear combination g2

A

(c3 � c4) contributing to some of the subthreshold parameters at order
Q4 is identified as the cause for the enhanced LECs. This critical combination remains large
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HB-NN HB-⇡N Cov RS

NLO Q2 "2 Q2 "2 Q2 "2

a+0+[M�1
⇡

10�3] -14.2 15.5(2.6) -24.0 -14.4(8.9) -24.1 -7.8(6.6) -0.9(1.4)
a�0+[M�1

⇡

10�3] 79.4 79.4(0) 79.4 79.4(0) 80.1 81.9(1) 85.4(9)
a+1+[M�3

⇡

10�3] 97.3 123.5(5.9) 103.9 129.2(6.2) 108.6 130.3(6.2) 131.2(1.7)
a�1+[M�3

⇡

10�3] -62.0 -78.6(2.1) -66.5 -81.7(2.1) -67.4 -83.2(2.1) -80.3(1.1)
a+1�[M�3

⇡

10�3] -34.6 -48.7(3.9) -47.6 -56.0(4.4) -43.6 -57.3(4.5) -50.9(1.9)
a�1�[M�3

⇡

10�3] -7.9 -15.0(1.9) -12.5 -15.9(2.2) -5.7 -14.2(2.5) -9.9(1.2)
b+0+[M�3

⇡

10�3] -80.0 -50.3(2.5) -70.2 -42.7(8.6) -53.1 -36.3(5.5) -45.0(1.0)
b�0+[M�3

⇡

10�3] 39.7 39.7(0) 20.1 26.7(5) 11.3 21.7(5) 4.9(8)

N2LO Q3 "3 Q3 "3 Q3 "3

a+0+[M�1
⇡

10�3] 0.5 -9.8(10.9) 0.5 -0.4(9.2) -14.8 1.0(17.3) -0.9(1.4)
a�0+[M�1

⇡

10�3] 92.2 92.7(10) 92.9 90.5(9) 89.9 81.7(1.6) 85.4(9)
a+1+[M�3

⇡

10�3] 113.8 125.8(16.7) 121.7 127.2(18.4) 116.4 128.5(9.6) 131.2(1.7)
a�1+[M�3

⇡

10�3] -74.8 -77.4(2.5) -75.5 -78.4(2.6) -75.1 -79.7(3.0) -80.3(1.1)
a+1�[M�3

⇡

10�3] -54.1 -53.4(14.1) -47.0 -52.5(15.8) -55.5 -52.5(8.5) -50.9(1.9)
a�1�[M�3

⇡

10�3] -14.1 -13.1(2.7) -2.5 -7.8(3.0) -10.4 -9.7(4.1) -9.9(1.2)
b+0+[M�3

⇡

10�3] -45.7 -38.1(9.6) -22.1 -23.7(14.4) -50.9 -34.7(12.1) -45.0(1.0)
b�0+[M�3

⇡

10�3] 35.9 26.4(1.0) 22.6 17.6(8) 21.6 14.2(2.0) 4.9(8)

N3LO Q4 "4 Q4 "4 Q4 "4

a+0+[M�1
⇡

10�3] -1.5 -1.5(8.5) -8.0 1.2(20.4) -5.7 -0.8(10.3) -0.9(1.4)
a�0+[M�1

⇡

10�3] 68.5 96.3(2.0) 58.6 70.0(3.3) 83.8 83.6(1.9) 85.4(9)
a+1+[M�3

⇡

10�3] 134.3 136.0(9.7) 132.1 135.2(8.7) 128.0 132.7(9.0) 131.2(1.7)
a�1+[M�3

⇡

10�3] -80.9 -80.0(3.4) -90.1 -86.4(2.7) -78.1 -81.1(3.6) -80.3(1.1)
a+1�[M�3

⇡

10�3] -55.7 -47.5(10.5) -73.7 -56.9(7.1) -53.5 -51.4(7.9) -50.9(1.9)
a�1�[M�3

⇡

10�3] -10.0 -5.6(4.9) -23.7 -14.4(6.5) -11.8 -10.4(5.7) -9.9(1.2)
b+0+[M�3

⇡

10�3] -42.2 -31.4(8.1) -44.5 -32.6(21.3) -54.7 -33.9(8.5) -45.0(1.0)
b�0+[M�3

⇡

10�3] -31.6 7.1(2.3) -65.2 -34.1(5.7) 2.3 2.9(2.1) 4.9(8)

Table 7.5.: Threshold parameters predicted at NLO, N2LO, and N3LO in the HB-NN, HB-⇡N
and covariant approach with implicit (Qn) and explicit ("n) � degrees of freedom.
The LECs from Table 7.1 are taken as input. The values determined by the RS
analysis [94] are given in comparison.
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HB-NN HB-⇡N Cov RS

NLO Q2 "2 Q2 "2 Q2 "2

a+0+[M�1
⇡

10�3] -14.2 15.5(2.6) -24.0 -14.4(8.9) -24.1 -7.8(6.6) -0.9(1.4)
a�0+[M�1

⇡

10�3] 79.4 79.4(0) 79.4 79.4(0) 80.1 81.9(1) 85.4(9)
a+1+[M�3

⇡

10�3] 97.3 123.5(5.9) 103.9 129.2(6.2) 108.6 130.3(6.2) 131.2(1.7)
a�1+[M�3

⇡

10�3] -62.0 -78.6(2.1) -66.5 -81.7(2.1) -67.4 -83.2(2.1) -80.3(1.1)
a+1�[M�3

⇡

10�3] -34.6 -48.7(3.9) -47.6 -56.0(4.4) -43.6 -57.3(4.5) -50.9(1.9)
a�1�[M�3

⇡

10�3] -7.9 -15.0(1.9) -12.5 -15.9(2.2) -5.7 -14.2(2.5) -9.9(1.2)
b+0+[M�3

⇡

10�3] -80.0 -50.3(2.5) -70.2 -42.7(8.6) -53.1 -36.3(5.5) -45.0(1.0)
b�0+[M�3

⇡

10�3] 39.7 39.7(0) 20.1 26.7(5) 11.3 21.7(5) 4.9(8)

N2LO Q3 "3 Q3 "3 Q3 "3

a+0+[M�1
⇡

10�3] 0.5 -9.8(10.9) 0.5 -0.4(9.2) -14.8 1.0(17.3) -0.9(1.4)
a�0+[M�1

⇡

10�3] 92.2 92.7(10) 92.9 90.5(9) 89.9 81.7(1.6) 85.4(9)
a+1+[M�3

⇡

10�3] 113.8 125.8(16.7) 121.7 127.2(18.4) 116.4 128.5(9.6) 131.2(1.7)
a�1+[M�3

⇡

10�3] -74.8 -77.4(2.5) -75.5 -78.4(2.6) -75.1 -79.7(3.0) -80.3(1.1)
a+1�[M�3

⇡

10�3] -54.1 -53.4(14.1) -47.0 -52.5(15.8) -55.5 -52.5(8.5) -50.9(1.9)
a�1�[M�3

⇡

10�3] -14.1 -13.1(2.7) -2.5 -7.8(3.0) -10.4 -9.7(4.1) -9.9(1.2)
b+0+[M�3

⇡

10�3] -45.7 -38.1(9.6) -22.1 -23.7(14.4) -50.9 -34.7(12.1) -45.0(1.0)
b�0+[M�3

⇡

10�3] 35.9 26.4(1.0) 22.6 17.6(8) 21.6 14.2(2.0) 4.9(8)

N3LO Q4 "4 Q4 "4 Q4 "4

a+0+[M�1
⇡

10�3] -1.5 -1.5(8.5) -8.0 1.2(20.4) -5.7 -0.8(10.3) -0.9(1.4)
a�0+[M�1

⇡

10�3] 68.5 96.3(2.0) 58.6 70.0(3.3) 83.8 83.6(1.9) 85.4(9)
a+1+[M�3

⇡

10�3] 134.3 136.0(9.7) 132.1 135.2(8.7) 128.0 132.7(9.0) 131.2(1.7)
a�1+[M�3

⇡

10�3] -80.9 -80.0(3.4) -90.1 -86.4(2.7) -78.1 -81.1(3.6) -80.3(1.1)
a+1�[M�3

⇡

10�3] -55.7 -47.5(10.5) -73.7 -56.9(7.1) -53.5 -51.4(7.9) -50.9(1.9)
a�1�[M�3

⇡

10�3] -10.0 -5.6(4.9) -23.7 -14.4(6.5) -11.8 -10.4(5.7) -9.9(1.2)
b+0+[M�3

⇡

10�3] -42.2 -31.4(8.1) -44.5 -32.6(21.3) -54.7 -33.9(8.5) -45.0(1.0)
b�0+[M�3

⇡

10�3] -31.6 7.1(2.3) -65.2 -34.1(5.7) 2.3 2.9(2.1) 4.9(8)

Table 7.5.: Threshold parameters predicted at NLO, N2LO, and N3LO in the HB-NN, HB-⇡N
and covariant approach with implicit (Qn) and explicit ("n) � degrees of freedom.
The LECs from Table 7.1 are taken as input. The values determined by the RS
analysis [94] are given in comparison.
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FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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 P-Waves Stat. Error

FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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 D-Waves Stat. Error

FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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 F-Waves Stat. Error

FIG. 13: (Color online) Predictions including theoretical uncertainties for D waves up to T
⇡

= 100
MeV. For remaining notation see Fig. 9.
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 πN-Sigma Term

implausible [34]. Therefore, the analysis of gπN gives phenomenological support to the WI08
and EM06 solutions, in detriment to the KA85’s one.

5.3. The pion-nucleon sigma term

The definition of the pion-nucleon sigma term can be given in terms of the commuta-
tors [77],

σπN =
1

2mN

3∑

a=1

1

3
⟨N(p)|[Qa

A, [Q
a
A,HSB]]|N(p)⟩, (37)

with Qa
A the axial charge andHSB is the chiral-symmetry breaking part of the QCD Hamilto-

nian. This quantity is related to the explicit breaking of the chiral symmetry and, therefore,
it should be small compared to Λχ. From Eq. (37) it is straightforward to obtain

σπN =
m̂

2mN
⟨N(p)|(ūu+ d̄d)|N(p)⟩, (38)

where m̂ = (mu +md)/2. The sigma term, in this form, can be identified with the nucleon
scalar form factor ū(p′)σ(t)u(p) = ⟨N(p′)|m̂(ūu+ d̄d)|N(p)⟩ evaluated at t = 0. This matrix
element can be derived also by means of the Hellmann-Feynman theorem from the quark-
mass dependence of the nucleon mass,

σπN = M2
π

∂mN

∂M2
π

. (39)

An explicit calculation of the scalar form factor or the nucleon mass in EOMS up to O(p3)
gives

σπN = −4c′1M
2
π −

3g2AM
3
π

16π2f 2
πmN

(
3m2

N −M2
π√

4m2
N −M2

π

arccos
Mπ

2mN
+Mπ log

Mπ

mN

)

, (40)

where c′1 is the LEC renormalized in the EOMS scheme (see Appendix E).
As it was discussed in the introduction, the pion nucleon sigma term is a quantity related

to the structure of the nucleon which is important to understand the origin of the mass of
the ordinary matter and the nature of the breaking of chiral symmetry in QCD. An accurate
value of this matrix element is also required in to reduce the hadronic uncertainties that enter
in the phenomenology of direct searches of dark matter. The main method to determine σπN
experimentally is by analytical continuation of the isoscalar scattering amplitude to the CD
point [18] (see also Sec. 6.1). However, there is still no consense on the value of σπN because
it varies depending on the PWA taken as input [78, 79, 80]. In this respect, Ref. [70] made an
important step forward by obtaining perfectly compatible results between ChPT and those
reported from the dispersive analyses based on the same PWA. It should be stressed that
both methods are well sound and model independent. The agreement reported in Ref. [70]
makes then clear that the problem to fix σπN rests on the data basis employed and not on
theory.

37

Hellmann-Feynman 
theorem

Cov

RS

�
⇡N

[MeV]

Q2 "2

57.8 ± 1.9 53.7 ± 1.9

Q3 "3

58.3 ± 1.9 60.7 ± 3.3

Q4 "4

64.9 � 0.8e1 ± 2.0 63.9 � 0.8e1 ± 2.1

LECs
HB Cov

KH GW RS KH GW RS

c1 -1.29 ± 0.08 -1.61 ± 0.07 -1.35 ± 0.02 -0.93 ± 0.08 -1.26 ± 0.07 -0.98 ± 0.02

c2 1.50 ± 0.12 1.34 ± 0.11 1.29 ± 0.04 1.44 ± 0.11 1.39 ± 0.10 1.34 ± 0.04

c3 -2.52 ± 0.08 -2.70 ± 0.08 -2.25 ± 0.03 -2.34 ± 0.08 -2.65 ± 0.08 -2.16 ± 0.03

c4 1.84 ± 0.04 1.90 ± 0.04 1.77 ± 0.02 1.62 ± 0.04 1.74 ± 0.04 1.61 ± 0.02

d1 + d2 0.57 ± 0.15 0.32 ± 0.14 -0.13 ± 0.06 0.42 ± 0.13 0.46 ± 0.12 0.05 ± 0.05

d3 -1.64 ± 0.29 -0.74 ± 0.27 -0.77 ± 0.10 -1.16 ± 0.18 -0.79 ± 0.17 -0.66 ± 0.06

d4 -1.16 ± 2.37 -1.18 ± 2.36 -0.97 ± 2.40 0.04 ± 2.21 0.24 ± 2.12 0.28 ± 2.15

d5 0.90 ± 0.18 0.26 ± 0.17 0.55 ± 0.05 0.66 ± 0.15 0.18 ± 0.14 0.32 ± 0.05

d10 -0.59 ± 1.93 -0.32 ± 1.93 -0.51 ± 1.93 0.29 ± 2.09 0.62 ± 2.08 0.62 ± 2.08

d11 -3.07 ± 2.00 -2.83 ± 2.00 -3.14 ± 2.00 -0.20 ± 2.06 -0.09 ± 2.05 -0.07 ± 2.06

d12 1.01 ± 2.05 0.67 ± 2.06 0.51 ± 2.05 0.66 ± 1.95 0.44 ± 1.94 0.06 ± 1.94

d13 -2.51 ± 2.05 -2.61 ± 2.05 -2.80 ± 2.05 -2.53 ± 1.99 -2.56 ± 1.98 -2.59 ± 1.99

d14 � d15 -1.66 ± 0.28 -0.82 ± 0.26 0.02 ± 0.12 -0.89 ± 0.22 -0.59 ± 0.20 0.11 ± 0.10

d16 -0.32 ± 0.70 -0.43 ± 0.71 -0.39 ± 0.68 0.97 ± 0.70 0.82 ± 0.70 0.88 ± 0.69

�2
⇡N

123 205 19 126 154 12

�2
⇡⇡N

183 180 188 189 186 187

TABLE IV: LECs determined from combined fits at order Q3 + �1.
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q/m
N

⇠ q/⇤
b

(16)

�PT (17)

G,H (18)

F I

l± (19)

�I
l± (20)

g, h (21)

m
N

M
⇡

F
⇡

g
A

938.27 139.57 92.2 1.289

TABLE I: LECs from the pion-nucleon sector. The values are given in 1/GeV.

m
N

M
⇡

F
⇡

m� g
A

g
⇡N�

938.27 139.57 92.2 1232 1.289 1.35

TABLE II: LECs from the pion-nucleon sector. The values are given in 1/GeV.

d�

d⌦

= |G|2 + |H|2 (22)

P
d�

d⌦

= 2 Im(GH⇤
) (23)

Q3 c1 c2 c3 c4 d1 + d2 d3 d5 d14 � d15
HB-NN -1.26(2) 4.87(4) -7.28(2) 4.73(4) 2.91(5) -3.25(8) 0.20(5) -6.92(13)

HB-⇡N -1.60(2) 3.54(3) -6.62(2) 4.04(3) 4.05(4) -3.22(8) -0.40(4) -7.01(13)

Cov -1.44(2) 3.74(3) -6.54(3) 3.93(3) 3.73(5) -2.41(5) -0.67(4) -5.88(12)

TABLE III: LECs determined from combined fits at order Q3.

�
⇡N

= (59.1± 3.5) MeV
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I. TEST

LECs 1/m
N

d+00 d+10 d+01 d+20 d+11 d+02 b+00 d�00 d�10 d�01 b�00 b�10 b�01
HB Q4 -0.48 -0.67 0.70 1.30 0.80 0.052 -1.44 0.71 0.77 -0.06 6.67 6.29 0.47

Cov

Cov All -1.22 0.75 0.97 0.54 0.43 -0.004 -6.05 1.40 -0.21 -0.25 8.03 4.13 0.38

RS -1.36 1.16 1.16 0.20 0.18 0.034 -3.45 1.41 -0.16 -0.14 10.49 1.00 0.21

LECs 1/m
N

d+00 d+10 d+01 d+20 d+11 d+02 b+00 d�00 d�10 d�01 b�00 b�10 b�01
HB Q4 -0.48 -0.67 0.70 1.30 0.80 0.052 -1.44 0.71 0.77 -0.06 6.67 6.29 0.47

Cov

Q4 -1.19 0.69 0.95 0.66 0.51 0.003 -1.85 0.92 0.50 -0.04 6.50 5.62 0.53

Cov All -1.22 0.75 0.97 0.54 0.43 -0.004 -6.05 1.40 -0.21 -0.25 8.03 4.13 0.38

RS -1.36 1.16 1.16 0.20 0.18 0.034 -3.45 1.41 -0.16 -0.14 10.49 1.00 0.21

LECs 1/m
N

d+00 d+10 d+01 d+20 d+11 d+02 b+00 d�00 d�10 d�01 b�00 b�10 b�01
HB Q4 -0.48 -0.67 0.70 1.30 0.80 0.052 -1.44 0.71 0.77 -0.06 6.67 6.29 0.47

Cov

Q4 -1.19 0.69 0.95 0.66 0.51 0.003 -1.85 0.92 0.50 -0.04 6.50 5.62 0.53

Q5 -1.22 0.73 0.98 0.52 0.38 -0.004 -5.05 1.24 0.21 -0.17 8.49 3.30 0.29

Q6 -1.21 0.72 0.97 0.59 0.42 -0.005 -6.24 1.43 -0.33 -0.27 8.06 3.91 0.36

Q7 -1.22 0.75 0.97 0.53 0.43 -0.004 -5.96 1.38 -0.19 -0.25 8.00 4.23 0.39

Cov All -1.22 0.75 0.97 0.54 0.43 -0.004 -6.05 1.40 -0.21 -0.25 8.03 4.13 0.38

RS -1.36 1.16 1.16 0.20 0.18 0.034 -3.45 1.41 -0.16 -0.14 10.49 1.00 0.21

T
⇡

< {50, 75, 100, 125, 150} MeV b= {1035, 1368, 1704, 1854, 2177} data points
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200 7. Matching of Pion-Nucleon Subthreshold Parameters

reasonably small di↵erences of the LECs between chiral orders and it is very comforting to see
that all LECs turn out to be of natural size. Both observations indicate that the convergence
in the covariant approach is improved compared to the HB ones. In Table 7.4, we collect the
correlation matrices in the �-less and �-ful case.

In Table 7.5, the covariant predictions for the threshold parameters are presented in compari-
son with the previous HB predictions and the RS values. Already the results in the covariant
�-less approach agree reasonably well with the values determined by the RS analysis. The
changes between chiral orders are visibly reduced compared to both HB counting schemes.
Nevertheless, the truncation of the chiral series still provides the dominant error. Including
the � explicitly leads to a further improvement of the convergence. In particular, the changes
between chiral orders are satisfyingly small and even negligible compared to the propagated
statistical error due to the uncertainties of the �-LECs. Moreover, just considering the highest
order results at order "4 and completely neglecting the statistical error, we observe that most
of the mean values turn out to be perfectly consistent with the RS results. The only exceptions
are the e↵ective ranges b±0+, which are somewhat too small in magnitude. To summarize, the
results in the covariant framework are significantly superior compared to the two HB frame-
works. Moreover, the covariant results indicate that our conservative errors for the �-LECs
might be overestimated. A more reliable determination of those couplings is needed to make
further statements. In Figs. 7.2 - 7.11, we also show the predictions for the S-, P -, D- and
F -wave phase shifts in comparison with the HB results. Whereas the covariant �-less predic-
tions already do a fair job in describing the phase shifts, it is simply remarkable how well the
covariant �-ful predictions agree with the RS and GWU-SAID phase shifts. Furthermore, the
truncation error in the �-ful case is negligible compared to the statistical one. This observation
is consistent with the previous one made for the predicted threshold parameters.

We have to stress that all these findings are purely empirical and it would be important to
find the explanation of the improved convergence in the covariant approach. As mentioned
before, in some cases the HB expansion distorts the analytic structure of the scattering ampli-
tude [40,100]. However, this is not the case for the ⇡N scattering amplitude in the subthreshold
and threshold region, where the correct analytic structure is reproduced by the HB formula-
tion. In particular, in both regions it is expected that 1/m

N

corrections are small. Thus, we
performed a strict chiral expansion of the covariant expressions for the subthreshold param-
eters to further investigate the improved convergence. In particular, the study of the 1/m

N

expansion of these expressions showed a very slow and oscillating convergence, whose origin can
be pinned down to non-analytic functions in M
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ln(M2

⇡

/m2
N

). We emphasize that such chiral logarithms only contribute to higher chiral orders,
namely O("5), to the covariant expressions, whereas at lower orders they are absorbed into
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such logarithms would be completely absorbed into LECs. This can be seen by separating such
a logarithm into an infrared singular and regular part [40, 69]
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where the first term can be associated with the pion tadpole and the second term with the
nucleon tadpole. The nucleon tadpoles are completely absent in the HB amplitude. By con-
struction, they are already absorbed into LECs on the level of the e↵ective Lagrangian. The
pion tadpoles, however, are absorbed by the HB renormalization procedure. The consequence
for the HB framework is that higher-order LECs are going to receive large contributions from
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this chapter, we employ the e↵ective axial vector coupling constant g
A

by taking into account
the Goldberger-Treiman discrepancy, such that it is related to the physical axial vector coupling
g
A,ph

via
g
A

= g
A,ph

� 2M2
⇡

d18 + O(Q5) . (3.38)

The value of the e↵ective coupling g
A

is fixed by the Goldberger-Treiman relation

g
A

=
g
⇡NN

F
⇡

m
N

, (3.39)

where we adopt for the pion-nucleon coupling constant g
⇡NN

the value g2
⇡NN

/4⇡ = 13.7(2) [101]
leading to g

A

= 1.289(1). Using the e↵ective coupling g
A

guarantees a correct reproduction of
the analytic structure of the ⇡N ! ⇡N scattering amplitude as well as removes the redundant
LEC d18 from the amplitude.

The tree-level diagrams relevant for ⇡N ! ⇡N to order Q4 are shown in Fig. 3.1, while
the leading-order loop diagrams are visualized in Fig. 3.2. Note that we do not show the
next-to-leading order loop diagrams explicitly, which can easily be generated as visualized in
Fig. 3.3. The idea is to replace one of the leading-order ⇡N -vertices with an even number of

pions by a subleading one from L(2)
⇡N

. Note that the chiral symmetry forbids ⇡N -vertices with

an odd number of pions in L(2)
⇡N

.

The tree-level diagrams at leading-order are constructed solely from the lowest-order vertices
such that they only depend on the well-known physical quantities F

⇡

and g
A

. The tree-level

graphs at higher order involve insertions of vertices with the LECs c
i

from L(2)
⇡N

, d
i

from L(3)
⇡N

,

e
i

from L(4)
⇡N

as well as the purely mesonic LECs l
i

from L(4)
⇡⇡

. In the ⇡N scattering amplitude,
some of the LECs e

i

only enter within linear combinations with the LECs c
i

. Thus, following
redefinitions on the level of the renormalized LECs discussed in the next paragraph are made
in order to get rid of the redundant ones [68]

c̄1 ! c̄1 + 2M2
⇡

(ē22 � 4ē38 + c̄1�
l3 l̄3/(32⇡2F 2

⇡

)) ,

c̄2 ! c̄2 � 8M2
⇡

(ē20 + ē35) ,

c̄3 ! c̄3 � 4M2
⇡

(2ē19 � ē22 � ē36) ,

c̄4 ! c̄4 � 4M2
⇡

(2ē21 � ē37) .

(3.40)

Such kind of redundancy is a general phenomenon in �PT. At su�ciently high orders, quark
mass renormalizations of certain lower-order LECs produce such kind of linear combinations of
LECs. Note that the linear combinations in Eq. (3.40) only hold for the 2⇡N̄N -vertex. Finally,
the ⇡N scattering amplitudes up to fourth order in the chiral counting depend on the LECs
c1,2,3,4, d1+2,3,5,14�15 and e14,15,16,17,18. Note that we neglect the LEC ē35, which is still present
in the covariant Q4 amplitudes after the redefinitions in Eq. (3.40), but which contribution
counts as of order Q5. Thus, the total number of LECs is 13, which is consistent with the most
general polynomial representation of the ⇡N scattering amplitude to fourth order in harmony
with charge, parity, time reversal, Lorentz, chiral and crossing symmetry [102].

In the HB formalism, one can perform an order-by-order renormalization of the LECs, which
is in complete analogy with the meson sector where, employing dimensional regularization, one
has

l
i

=
�

li

32⇡2
l̄
i

+ �
li

✓
�̄ +

1

32⇡2
ln

✓
M2

⇡

µ2

◆◆
(3.41)

with

�̄ =
µd�4

16⇡2

✓
1

d � 4
+

1

2
(�

E

� 1 � ln 4⇡)

◆
, (3.42)


